Dementia of Alzheimer's Type (DAT) is associated with a devastating and irreversible cognitive decline. As a pharmacological intervention has not yet been developed to reverse disease progression, preventive medicine will play a crucial role for patient care and treatment planning. However, predicting which patients will progress to DAT is difficult as patients with Mild Cognitive Impairment (MCI) could either convert to DAT (MCI-C) or not (MCI-NC). In this paper, we develop a deep learning model to address the heterogeneous nature of DAT development. Structural magnetic resonance imaging was utilized as a single biomarker, and a three-dimensional convolutional neural network (3D-CNN) was developed. The 3D-CNN was trained using transfer learning from the classification of Normal Control and DAT scans at the source task. This was applied to the target task of classifying MCI-C and MCI-NC scans. The model results in 82.4% classification accuracy, which outperforms current models in the field. Furthermore, by implementing an occlusion map approach, we visualize key brain regions that significantly contribute to the prediction of MCI-C and MCI-NC. Results show the hippocampus, amygdala, cerebellum, and pons regions as significant to prediction, which are consistent with ; current understanding of disease. Finally, the model's prediction value is significantly correlated with rates of change in clinical assessment scores, indicating the model is able to predict an individual patient's future cognitive decline. This information, in conjunction with the identified anatomical features, will aid in building a personalized therapeutic strategy for individuals with MCI. This model could also be useful for selection of participants for clinical trials.
BACKGROUNDIdentifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre‐symptomatic risk assessment but also for building personalized therapeutic strategies.METHODSWe implemented a novel simulative deep learning model to chromosome 19 genetic data from the Alzheimer's Disease Neuroimaging Initiative and the Imaging and Genetic Biomarkers of Alzheimer's Disease datasets. The model quantified the contribution of each single nucleotide polymorphism (SNP) and their epistatic impact on the likelihood of AD using the occlusion method. The top 35 AD‐risk SNPs in chromosome 19 were identified, and their ability to predict the rate of AD progression was analyzed.RESULTSRs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD‐risk SNPs were significant predictors of AD progression.DISCUSSIONThe model successfully estimated the contribution of AD‐risk SNPs that account for AD progression at the individual level. This can help in building preventive precision medicine.
We report on the ongoing project “PREDICT-ADFTD: Multimodal Imaging Prediction of AD/FTD and Differential Diagnosis” describing completed and future work supported by this grant. This project is a multi-site, multi-study collaboration effort with research spanning seven sites across the US and Canada. The overall goal of the project is to study neurodegeneration within Alzheimer’s Disease, Frontotemporal Dementia, and related neurodegenerative disorders, using a variety of brain imaging and computational techniques to develop methods for the early and accurate prediction of disease and its course. The overarching goal of the project is to develop the earliest and most accurate biomarker that can differentiate clinical diagnoses to inform clinical trials and patient care. In its third year, this project has already completed several projects to achieve this goal, focusing on (1) structural MRI (2) machine learning and (3) FDG-PET and multimodal imaging. Studies utilizing structural MRI have identified key features of underlying pathology by studying hippocampal deformation that is unique to clinical diagnosis and also post-mortem confirmed neuropathology. Several machine learning experiments have shown high classification accuracy in the prediction of disease based on Convolutional Neural Networks utilizing MRI images as input. In addition, we have also achieved high accuracy in predicting conversion to DAT up to five years in the future. Further, we evaluated multimodal models that combine structural and FDG-PET imaging, in order to compare the predictive power of multimodal to unimodal models. Studies utilizing FDG-PET have shown significant predictive ability in the prediction and progression of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.