With the increasing demand for rehabilitation and the lack of professional rehabilitation personnel, robot-assisted rehabilitation technology plays an increasingly important role in neurological rehabilitation. In order to recover the exercise ability of patients with waist injury, a new type of wire-driven waist rehabilitation training parallel robot (WWRTPR) is designed. According to the motion trajectory planning of waist rehabilitation training, two coordinate systems are established: moving coordinate system and static coordinate system. The inverse kinematics modeling analysis is carried out, and the dynamic model of the robot is established by using Newton–Euler method. An intelligent control method of force/position hybrid control based on radial basis function neural network is proposed. The stability of the closed-loop system is analyzed, and the results show that WWRTPR tends to be stable. The simulation analysis of rehabilitation training on WWRTPR is carried out, and the simulation results show that the proposed intelligent control method can effectively control the robot system, which provides a reference for the development of a flexible intelligent rehabilitation training robot.
A sliding mode robust control law based on Hamilton-Jacobi Inequality (HJI) theory and a disturbance observer is proposed for a wire-driven parallel robot (WDPR) used in a wind-tunnel test. First, the wire-driven parallel robot is described, and its kinematics model established. Second, according to the uncertainty, external disturbance, and redundant drive of the system, the dynamic model of the end-effector and drive system, and the overall dynamic model of the system are established. Hamilton-Jacobi Inequality theory and the designed disturbance observer are applied to the designed sliding mode robust control law, and the anti-interference ability of the WDPR is verified. The stability of the closed-loop system is analyzed by Lyapunov's second method, and the results show that the closed-loop system tends to be asymptotically stable. Finally, taking the dynamic trajectory simulation of compound motion and six-degree-of-freedom motion as examples, the designed sliding mode robust control law is verified by simulation, and the contrastive simulation analysis shows that the disturbance observer can effectively reduce the switching gain, thus effectively reducing chattering and improving the control accuracy of the system. The simulation results show that the designed sliding mode robust control law can effectively suppress the influence of external disturbance on the control error. The control input and the length of the wire change in a certain range. They also prove that the pose error is small, and the control accuracy is high. All of the foundings lay a theoretical foundation and technical support for the practical application of the prototype in a wind-tunnel test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.