In order to improve the accuracy of visual SLAM algorithms in a dynamic scene, instance segmentation is widely used to eliminate dynamic feature points. However, the existing segmentation technology has low accuracy, especially for the contour of the object, and the amount of calculation of instance segmentation is large, limiting the speed of visual SLAM based on instance segmentation. Therefore, this paper proposes a contour optimization hybrid dilated convolutional neural network (CO-HDC) algorithm, which can perform a lightweight calculation on the basis of improving the accuracy of contour segmentation. Firstly, a hybrid dilated convolutional neural network (HDC) is used to increase the receptive field, which is defined as the size of the region in the input that produces the feature. Secondly, the contour quality evaluation (CQE) algorithm is proposed to enhance the contour, retaining the highest quality contour and solving the problem of distinguishing dynamic feature points from static feature points at the contour. Finally, in order to match the mapping speed of visual SLAM, the Beetle Antennae Search Douglas–Peucker (BAS-DP) algorithm is proposed to lighten the contour extraction. The experimental results have demonstrated that the proposed visual SLAM based on the CO-HDC algorithm performs well in the field of pose estimation and map construction on the TUM dataset. Compared with ORB-SLAM2, the Root Mean Squared Error (Rmse) of the proposed method in absolute trajectory error is about 30 times smaller and is only 0.02 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.