Mega-sports events have a profound impact on promoting the urbanization process, optimizing the urban spatial structure, and improving the competitiveness of the host city. Taking the 19th Asian Games Hangzhou 2022 (AGH) as an example, we used remote sensing data and a scenario-based model to simulate land-use changes and developments from 2005 to 2025. By setting two scenarios, natural development and AGH-driven development, we explored the impact of AGH on urban development and its driving factors. The results show that (1) cultivated land areas decreased by 369.96 km2, while construction land areas increased by 488.33 km2 among the main land-use types in Hangzhou from 2005 to 2020. Urban areas quickly expanded with the West Lake as the center. (2) Urban sprawl intensity under the AGH-driven scenario is expected to increase by 0.91% compared to in the natural-development scenario, indicating that hosting AGH would accelerate the expansion of urban land, particularly in districts set with sports venues such as Binjiang, Xiaoshan, and Yuhang. The strategic trend of supporting the Qiantang River is obvious. (3) Under the influence of AGH, the centroid of urban construction land shifted towards the southeast, and the spatial direction was remarkable. The construction of venues and supporting facilities, and construction land for public rail transit, are the main direct driving forces of urban expansion. The AGH enhances the pace of urbanization, significantly altering the urban spatial structure and helping the city achieve a major transition from the West Lake Era to the Qiantang River Era. Furthermore, our research can provide insights into other cities that will host mega-sports events.
Land reclamation has occurred extensively worldwide to accommodate urbanization and economic development, especially in developing countries like China. However, we have a limited understanding of the long‐term dynamics and key drivers of land use/cover change in the reclaimed area. In this study, we monitored the detailed spatiotemporal evolution of land reclamation from 1973 to 2018 in Qiantang New District using time‐series LANDSAT and SENTINEL‐2A images and then compared the differences of landscape changes between reclaimed, which are the new‐built land from Qiantang River, and inland areas. Key findings include: (1) A significant decreasing trend for areas near the Qiantang River along the coastline (212.21 to 80.99 km2) and an increasing trend for constructed land (10.05 to 120.89 km2) from 1973 to 2018 was detected; (2) The development modes of the inland area and reclaimed area were significantly different. Development in the inland area was similar to other Chinese cities, whereas the reclaimed area was relatively complex with two main changing paths; and (3) Year 2008 was an important turning point in the perspective of urbanization in the study area. Before 2008, urbanization was random and uncontrolled. After 2008, new governance on land appeared and changed the landscape into a compact and uniform pattern. The proposed framework should reveal the detailed trajectory of land reclamation in small areas and provide insights and tools for better understanding the impact of human activities on the landscape pattern in coastal regions under rapid urbanization.
Flooding caused by unpredictable high-intensity rainfall events in urban areas has become a global phenomenon due to the combined effect of urbanization and climate change. There are numerous hydrodynamic models for urban flooding simulation and management. However, it is difficult for most of these models to simplify the surface runoff process and still provide high simulation accuracy. In this study, an improved simplified urban storm inundation model (SUSIM) that integrates urban terrain, precipitation, surface runoff and inundation models was proposed to quickly and accurately simulate the different inundation conditions by modifying the urban terrain and catchments. Haining City, China, was selected as a case study in which SUSIM was tested and validated. The results were as follows: (1) Detailed locations and depths of inundation were quickly calculated with high correlation coefficient (≥75%) compared to three actual rainfall events. (2) Four scenarios under different rainfall intensities (5-, 10-, 20- and 50-year return period, respectively) were designed. The maximum inundation depths significantly increased from 403 mm to 1522 mm and the maximum inundation area increased from 2904 m2 to 7330 m2. According to the simulation results, Haining Avenue, the West Mountain Park and the old urban area in the northeast part of the city would encounter the most extensive and severe inundation. The result reveals that the SUSIM could find inundation locations and calculate inundation depth and area quickly. It provides better insights and tools for urban inundation simulation and planning strategies.
Under the circumstances of global warming and rapid urbanization, damage caused by urban inundation are becoming increasingly severe, attracting the attention of both researchers and governors. The accurate simulation of urban inundation is essential for the prevention of inundation hazards. In this study, a 1D pipe network and a 2D urban inundation coupling model constructed by InfoWorks ICM was used to simulate the inundation conditions in the typical urbanized area in the north of Lin’an. Two historical rainfall events in 2020 were utilized to verify the modeling results. The spatial–temporal variation and the causes of urban inundation under different designed rainfalls were studied. The results were as follows: (1) The constructed model had a good simulation accuracy, the Nash–Sutcliffe efficiency coefficient was higher than 0.82, R2 was higher than 0.87, and the relative error was ±20%. (2) The simulation results of different designed rainfall scenarios indicated that the maximum inundation depth and inundation extent increased with the increase in the return period, rainfall peak position coefficient, and rainfall duration. According to the analysis results, the urban inundation in Lin’an is mainly affected by topography, drainage network (spatial distribution and pipe diameter), and rainfall patterns. The results are supposed to provide technical support and a decision-making reference for the urban management department of Lin’an to design inundation prevention measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.