The Super-Resolution Generative Adversarial Network (SR-GAN) [1] is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied with unpleasant artifacts. To further enhance the visual quality, we thoroughly study three key components of SRGANnetwork architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN [2] to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN and won the first place in the PIRM2018-SR Challenge 1 [3]. The code is available at https://github.com/xinntao/ESRGAN.
Deep learning based methods have dominated superresolution (SR) field due to their remarkable performance in terms of effectiveness and efficiency. Most of these methods assume that the blur kernel during downsampling is predefined/known (e.g., bicubic). However, the blur kernels involved in real applications are complicated and unknown, resulting in severe performance drop for the advanced SR methods. In this paper, we propose an Iterative Kernel Correction (IKC) method for blur kernel estimation in blind SR problem, where the blur kernels are unknown. We draw the observation that kernel mismatch could bring regular artifacts (either over-sharpening or over-smoothing), which can be applied to correct inaccurate blur kernels. Thus we introduce an iterative correction scheme -IKC that achieves better results than direct kernel estimation. We further propose an effective SR network architecture using spatial feature transform (SFT) layers to handle multiple blur kernels, named SFTMD. Extensive experiments on synthetic and real-world images show that the proposed IKC method with SFTMD can provide visually favorable SR results and the state-of-the-art performance in blind SR problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.