This paper analyzed the development of data mining and the development of the fifth generation (5G) for the Internet of Things (IoT) and uses a deep learning method for stock forecasting. In order to solve the problems such as low accuracy and training complexity caused by complicated data in stock model forecasting, we proposed a forecasting method based on the feature selection (FS) and Long Short-Term Memory (LSTM) algorithm to predict the closing price of stock. Considering its future potential application, this paper takes 4 stock data from the Shenzhen Component Index as an example and constructs the feature set for prediction based on 17 technical indexes which are commonly used in stock market. The optimal feature set is decided via FS to reduce the dimension of data and the training complexity. The LSTM algorithm is used to forecast closing price of stock. The empirical results show that compared with the LSTM model, the FS-LSTM combination model improves the accuracy of prediction and reduces the error between the real value and the forecast value in stock price prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.