In the present study, a nanoparticle-multilayer metal film substrate was presented with silver nanoparticles (Ag NPs) assembled on a multilayer gold (Au) film by employing alumina (Al2O3) as a spacer. The SERS performance of the proposed structures was determined. It was suggested that the SERS effect was improved with the increase in the number of layers, which was saturated at four layers. The SERS performance of the structures resulted from the mutual coupling of multiple plasmon modes [localized surface plasmons (LSPs), surface plasmon polaritons (SPPs), as well as bulk plasmon polaritons (BPPs)] generated by the Ag NP-multilayer Au film structure. Furthermore, the electric field distribution of the hybrid system was studied with COMSOL Multiphysics software, which changed in almost consistency with the experimentally achieved results. For this substrate, the limit of detection (LOD) was down to 10−13 M for the rhodamine 6G (R6G), and the proposed SERS substrate was exhibited prominently quantitatively detected capability and high reproducibility. Moreover, a highly sensitive detection was conducted on toluidine blue (TB) molecules. As revealed from the present study, the Ag NP-multilayer Au film structure can act as a dependable SERS substrate for its sensitive molecular sensing applications in the medical field.
In the present study, an optical fiber surface plasmon resonance (SPR) biosensor was developed for measuring time- and concentration-dependent DNA hybridization kinetics. Its design complies with a 3D
Au
/
Al
2
O
3
multilayer composite hyperbolic metamaterial (HMM), a graphene film, and a D-shaped plastic optical fiber. According to the numerical simulation and the experimental demonstration, the SPR peak of the designed biosensor can be effectively altered in the range of visible to near-infrared by varying the HMM structure. The sensitivity of the appliance was shown to achieve a value of up to 4461 nm/RIU, allowing its applicability for bulk refractive index sensing. Furthermore, a biosensor designed in this work displayed high-resolution capability (ranging from 10 pM to 100 nM), good linearity, and high repeatability along with a detection limit down to 10 pM, thus suggesting a vast potential for medical diagnostics and clinical applications.
We demonstrate the generation of versatile mode-locked operations in an Er-doped fiber laser with an indium tin oxide (ITO) saturable absorber (SA). As an epsilon-near-zero material, ITO has been only used to fashion a mode-locked fiber laser as an ITO nanoparticle-polyvinyl alcohol SA. However, this type of SA cannot work at high power or ensure that the SA materials can be transmitted by the light. Thus, we covered the end face of a fiber with a uniform ITO film using the radio frequency magnetron sputtering technology to fabricate a novel ITO SA. Using this new type of SA, single-wavelength pulses, dual-wavelength pulses, and triple-wavelength multi-pulses were achieved easily. The pulse durations of these mode-locked operations were 1.67, 6.91, and 1 ns, respectively. At the dual-wavelength mode-locked state, the fiber laser could achieve an output power of 2.91 mW and a pulse energy of 1.48 nJ. This study reveals that such a proposed film-type ITO SA has excellent nonlinear absorption properties, which can promote the application of ITO film for ultrafast photonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.