There is very little information on the diurnal and seasonal patterns of Cuculidae species’ calling activity in subtropical areas. In this study, we used passive acoustic monitoring to investigate the diurnal and seasonal patterns of calling activity of seven Cuculidae species at three sites in eastern China’s forest over a year. Our results showed that these species exhibited significant diurnal variations except for Cuculus micropterus. Eudynamys scolopaceus and Cuculus saturatus increased their vocal activity at dawn and dusk, whereas the other four species peaked their calling activity in the morning. Five species showed significant seasonal variations with a peak in vocal activities earlier in the season (late May or early June) and a gradual decline after that, except for Clamator coromandus, which displayed two peaks in seasonal calling activity. As for Cuculus micropterus, its calling activity was not significantly related to the season. Our study has provided basic knowledge about the calling patterns of seven Cuculidae species, and based on seasonal changes in vocal activity we propose that the breeding season of these species in east China begins in late May and ends in July.
Acoustic communication among birds plays an important role in attracting mates and defending territories. For the successful transmission of songs, individuals of different species often avoid singing at the same time to reduce acoustic interference from background noise and overlapping signals from heterospecifics. Such behavioural acoustic niche partitioning may occur especially among closely related species due to their ecological similarities. In this study, we recorded bird sounds in a subtropical forest in China in May–June 2019 and detected seven cuckoo species. Extracting characteristics of the cuckoo calls, we found that only four of the 21 pairs of species overlapped in frequency range, and 19 pairs were classified accurately using a linear discriminant analysis classifier based on their features. The remaining two species pairs could be separated based on temporal or spatial distribution patterns. We also analysed the temporal distribution patterns and overlap time of the calls, finding that the seven species exhibit partitioning in at least one of three acoustic dimensions (site, frequency, activity time). We conclude that the seven sympatric cuckoo species were strongly partitioned in acoustic signal space and minimally masked each other's signals.
There is an abundance of bird species in subtropical areas, but studies on the vocal behavior of non-passerines in subtropical regions are limited. In this study, passive acoustic monitoring was used to investigate the temporal acoustic patterns of the vocal activities of the Oriental Turtle Dove (Streptopelia orientalis) in Yaoluoping National Nature Reserve (YNNR) in eastern China. The results show that the vocal production of the Oriental Turtle Dove exhibited a seasonal variation, peaking in the period April–August. Additionally, its diurnal vocal activity displayed a bimodal pattern in late spring and summer, with the first peak in the morning and a secondary peak at dusk. Among weather factors, temperature significantly affected the temporal sound pattern of the Oriental Turtle Dove, instead of humidity and precipitation. This study, which was focused on sound monitoring technology, provides knowledge for further research on bird behavior and ecology. In the future, long-term sound monitoring could be used for managing and conserving bird biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.