1CircRNAs, a class of widespread circular RNAs produced from precursor mRNA back-splicing, have been implicated in regulation of gene expression in eukaryotes, but their biological functions in plants have not yet been elucidated. By deep sequencing of rRNA-removed and RNase R-digested RNA samples we have identified several thousands of putative back-splicing sites in tomato fruit (Solanum lycopersicum) and show that the abundance of some of these circRNAs derived from fruit pigment biosynthesis genes are regulated by fruit ripening. Herein, we overexpressed a circRNA derived from Phytoene Synthase 1 (PSY1) in tomato 'Ailsa Craig' and microTom. The PSY1 mRNA abundance, the lycopene and β-carotene accumulation were decreased significantly in the transgenic tomato fruits, likely due to the continuous highly expressed circRNAs and/or the low abundant linear RNAs generated from the overexpression vector. Besides, overexpression of a circRNA derived from Phytoene Desaturase (PDS) showed similar results. Our results provide biological insights into plant circRNAs.CircRNAs, a class of circular RNAs in eukaryotes, are derived from precursor mRNA back-splicing 1 . Although circRNAs have been identified more than 20 years ago [2][3][4] , they had been considered to be produced from aberrant splicing and their existence and functional potential were both underestimated. Nowadays, with the development of next-generation sequencing and bioinformatics, circRNAs have been identified in various eukaryotic species [5][6][7][8][9] . Most of the identified circRNAs are expressed at low levels, indicating the possibility that the majority of circRNAs might be splicing byproducts with little functional potential 8,[10][11][12] . However, many circRNAs are more abundant than their linear counterparts [5][6][7][8]13 , suggesting the potential functional significance of these circular RNA molecules. Recent studies revealed that circRNAs are more stable than linear mRNAs, and most of them are cytoplasmic 6,7,13 . In addition, the circularization of circRNAs are conserved among species, and the expression of circRNAs are often cell, tissue and developmental stage-specific 7,8,[13][14][15] . Recent studies have revealed that circRNAs may play roles in gene expression regulation, although the function of most circRNAs remain largely unknown [16][17][18] . The biogenesis of circRNAs is considered to be regulated by both cis-elements and trans-acting factors 16,18 . Complementary sequences or inverted repeats in the introns flanking the back-splice site could promote exon circularization by pairing to form hairpin structures 10,13,19,20 , and multiple circRNAs may be produced from one single gene due to different sequence pairing, which is referred as to alternative circularization 10 . However, there are also circRNAs produced from exons without being bracketed by complementary sequences [21][22][23] , indicating that other cis-elements may account for the circularization, such as sequences recognized by RNA-binding proteins (RBPs) [24][25]...
Naturally-occurring epimutants are rare and have mainly been described in plants. However how these mutants maintain their epigenetic marks and how they are inherited remain unknown. Here we report that CHROMOMETHYLASE3 (SlCMT3) and other methyltransferases are required for maintenance of a spontaneous epimutation and its cognate Colourless non-ripening (Cnr) phenotype in tomato. We screened a series of DNA methylation-related genes that could rescue the hypermethylated Cnr mutant. Silencing of the developmentally-regulated SlCMT3 gene results in increased expression of LeSPL-CNR, the gene encodes the SBP-box transcription factor residing at the Cnr locus and triggers Cnr fruits to ripen normally. Expression of other key ripening-genes was also up-regulated. Targeted and whole-genome bisulfite sequencing showed that the induced ripening of Cnr fruits is associated with reduction of methylation at CHG sites in a 286-bp region of the LeSPL-CNR promoter, and a decrease of DNA methylation in differentially-methylated regions associated with the LeMADS-RIN binding sites. Our results indicate that there is likely a concerted effect of different methyltransferases at the Cnr locus and the plant-specific SlCMT3 is essential for sustaining Cnr epi-allele. Maintenance of DNA methylation dynamics is critical for the somatic stability of Cnr epimutation and for the inheritance of tomato non-ripening phenotype.
Summary Currently, there are few studies concerning the function of heavy metal ATPase 2 (HMA2), particularly in monocotyledons, and the potential application of this protein in biofortification and phytoremediation. Thus, we isolated and characterized the TaHMA2 gene from wheat (Triticum aestivum L.). Our results indicate that TaHMA2 is localized to the plasma membrane and stably expressed, except in the nodes, which showed relatively high expression. Zinc/cadmium (Zn/Cd) resistance was observed in TaHMA2‐transformed yeast. The over‐expression of TaHMA2 increased the elongation and decreased the seed‐setting rate in rice (Oryza sativa L.), but not Arabidopsis thaliana, tobacco (Nicotiana tabacum L.) or wheat. TaHMA2 over‐expression also improved root‐shoot Zn/Cd translocation, especially in rice. The seeds of transgenic rice and wheat, not tobacco, showed decreased Zn concentrations. The Zn concentration was decreased in all parts of the transgenic rice seeds, but was decreased only in the ventral endosperm of wheat, which showed an increased Zn concentration in the embryo and aleurone. The over‐expression of TaHMA2 improved plant tolerance under moderate Zn stress and Zn deficiency, but Zn and Cd resistance decreased under high levels of Zn and Cd stress, respectively. The Cd concentration in transgenic rice seedlings was dramatically increased under Zn deficiency. Thus, over‐expression of TaHMA2 showed a more obvious phenotype in monocotyledons than in dicotyledons. These findings provide important information for TaHMA2, and more efforts should be made in the future to characterize the reduced Zn concentration in TaHMA2 transgenic grains and the diversity of TaHMA2 substrate specificity.
SnYSL3 encodes a plasma-localized transporter delivering various metal-nicotianamine complexes. The expression of SnYSL3 is up-regulated by excess Cd, suggesting an important role for SnYSL3 in response to Cd stress. The Yellow Stripe-Like (YSL) transporters have been proposed to participate in metal uptake and long-range transport in model plants. In this study, we isolated and characterized a novel member of the YSL gene family, SnYSL3, from the cadmium hyperaccumulator Solanum nigrum. SnYSL3 was constitutively expressed and encodes a plasma membrane-localized protein. In situ RNA hybridization localized the SnYSL3 transcripts predominantly in vascular tissues and epidermal cells of the roots and stems, while in leaves, the mRNA levels were high in the vasculature. The SnYSL3 expression level was up-regulated by excess Cd, excess Fe and Cu deficiency. Heterologous expression of SnYSL3 in yeast revealed that SnYSL3 transports nicotianamine complexes containing Fe(II), Cu, Zn and Cd. SnYSL3 overexpression in Arabidopsis thaliana decreased Fe and Mn concentrations in the roots and increased the root-to-shoot translocation ratios of Fe and Mn. Under Cd exposure, the transgenic plants showed increased translocation ratios of Fe and Cd, but no difference was observed in Mn translocation from roots to shoots between the transgenic and wild-type lines. Although the accurate function of SnYSL3 remains to be confirmed, these results suggest that SnYSL3 is a transporter delivering a broad range of metal-nicotianamine complexes and is potentially important for the response to heavy metal stress, especially due to Cd and Fe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.