One of the best ways to control COVID-19 is vaccination. Among the various SARS-CoV-2 vaccines, inactivated virus vaccines have been widely applied in China and many other countries. To understand the underlying protective mechanism of these vaccines, it is necessary to systematically analyze the humoral responses that are triggered. By utilizing a SARS-CoV-2 microarray with 21 proteins and 197 peptides that fully cover the spike protein, antibody response profiles of 59 serum samples collected from 32 volunteers immunized with the inactivated virus vaccine BBIBP-CorV were generated. For this set of samples, the microarray results correlated with the neutralization titers of the authentic virus, and two peptides (S1-5 and S2-22) were identified as potential biomarkers for assessing the effectiveness of vaccination. Moreover, by comparing immunized volunteers to convalescent and hospitalized COVID-19 patients, the N protein, NSP7, and S2-78 were identified as potential biomarkers for differentiating COVID-19 patients from individuals vaccinated with the inactivated SARS-CoV-2 vaccine. The comprehensive profile of humoral responses against the inactivated SARS-CoV-2 vaccine will facilitate a deeper understanding of the vaccine and provide potential biomarkers for inactivated virus vaccine-related applications.
Ground-motion prediction equations (GMPEs) for the horizontal and vertical spectral accelerations (SAs) from the offshore area off the Sagami Bay is presented in this article. To compare the ground motions on the seafloor with those at onshore sites, an onshore GMPE was derived for the onshore stations adjacent to the offshore sites and including those in the Kanto basin sites. The offshore dataset includes 738 three-component records, and the onshore dataset includes 3775 records; both datasets are derived from the same set of 233 earthquakes selected for this study. The local site conditions of the offshore sites are investigated by implementing the mean horizontal-to-vertical response spectral ratios because soil condition data are unavailable. Individual site correction terms are used for the offshore sites due to differences among the site conditions, whereas site-class terms are used for the onshore sites based on the travel-time-averaged shear-wave velocity to 30 m (VS30). A comparison between the offshore and onshore models shows that the horizontal SAs for the whole periods and vertical SAs for moderate and long periods of the offshore motions are considerably larger than those of the onshore motions due to the deep deposition layer comprising soft sediment blanketing the seafloor; the vertical SAs of the offshore motions are slightly smaller than those of the onshore motions at short spectral periods. The inconsistency of the vertical motions at short periods may be due to the combined effect of the deposition layer and water layer. However, the vertical site amplification for short periods is independent of the water depth, and the reason of high-frequency deficiency in vertical components need further investigation.
The "double low-points" anomaly in daily variation of vertical geomagnetic component was observed on May 9, 2008 at 13 geomagnetic observatories belonging to the geomagnetic observatory network center of China Earthquake Administration. These observatories distribute roughly on three belts with the intersection in western Sichuan. On May 12, three days after the anomaly appearance, the great M S 8.0 Wenchuan earthquake occurred. The "double low-points" anomaly in daily variation of vertical geomagnetic component is an anomalous phenomenon of regional geomagnetism, which does exist objectively. The possible cause is the change of extrinsic eddy current system resulting in geomagnetic daily quiet variation (S q ), or the delay of several hours between the intrinsic and the extrinsic eddy current systems. The relationship between the "double low-points" anomaly of daily geomagnetic variation and the earthquake reveals that the former possibly reflects the accelerative alteration of earthquake gestation in the deep Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.