Laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectra of the Ã2E−X̃2A1 electronic transition of the calcium methoxide (CaOCH3) radical have been obtained under jet-cooled conditions. Complete active space self-consistent field and coupled-cluster calculations on the free radical were performed to aid the assignment of vibronic transitions observed in the LIF/DF spectra. In addition to dominant spectral features that are well reproduced by vibrational frequencies and Franck-Condon (FC) factors calculated ab initio, the FC matrix for the Ã2E−X̃2A1 electronic transition contains considerable off-diagonal elements that connect (i) the CaO-stretch (ν4) mode and non-CaO stretch modes and (ii) the asymmetric CaOC stretch (ν3) and the CaOC bending (ν8) modes. The Jahn-Teller and pseudo-Jahn-Teller interactions involving the Ã2E state as well as the spin-orbit interaction induce additional vibronic transitions that are not allowed under the Born-Oppenheimer approximation. Additionally, anharmonic vibrational terms in the ground state induce transitions that are forbidden in the harmonic-oscillator approximation. Spin-orbit splitting has been observed for several vibrational levels of the Ã2E state, and an essentially constant value was measured at all levels accessed in the LIF experiment. Implications of the present spectroscopic investigation to the proposed schemes of laser-cooling MOCH3 (M = alkaline earth metals) molecules and detection of time-reversal-symmetry-violating interactions are discussed.
Laser-induced fluorescence/dispersed fluorescence (LIF/DF) and cavity ring-down spectra of the A1̃2A′′/A2̃2A′−X̃2A′ electronic transition of the calcium ethoxide (CaOC2H5) radical have been obtained under jet-cooled conditions. An essentially constant Ã2−Ã1 energy separation for different vibronic levels is observed in the LIF spectrum, which is attributed to both the spin–orbit (SO) interaction and non-relativistic effects. Electronic transition energies, vibrational frequencies, and spin–vibrational eigenfunctions calculated using the coupled-cluster method, along with results from previous complete active space self-consistent field calculations, have been used to predict the vibronic energy level structure and simulate the recorded LIF/DF spectra. Although the vibrational frequencies and Franck–Condon (FC) factors calculated under the Born–Oppenheimer approximation and the harmonic oscillator approximation reproduce the dominant spectral features well, the inclusion of the pseudo-Jahn–Teller (pJT) and SO interactions, especially those between the A1̃2A″/A2̃2A′ and the B̃2A′ states, induces additional vibronic transitions and significantly improves the accuracy of the spectral simulations. Notably, the spin–vibronic interactions couple vibronic levels and alter transition intensities. The calculated FC matrix for the A1̃2A′′/A2̃2A′−X̃2A′ transition contains a number of off-diagonal matrix elements that connect the vibrational ground levels to the levels of the ν8 (CO stretch), ν11 (OCC bending), ν12 (CaO stretch), ν13 (in-plane CaOC bending), and ν21 (out-of-plane CaOC bending) modes, which are used for vibrational assignments. Transitions to the ν21(a″) levels are allowed due to the pJT effect. Furthermore, when LIF transitions to the Ã-state levels of the CaOC-bending modes, ν13 and ν21, are pumped, A1̃2A′′/A2̃2A′→X̃2A′ transitions to the combination levels of these two modes with the ν8, ν11, and ν12 modes are also observed in the DF spectra due to the Duschinsky mixing. Implications of the present spectroscopic investigation to laser cooling of asymmetric-top molecules are discussed.
An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.
We report ultrafast spectroscopy investigations of photoinduced exciton dynamics in three novel CH 3 NH 3 PbBr 3 perovskite nanostructures: nanocrystals (0D), nanowires (1D), and nanoplatelets (2D). Aided by analysis of UV−visible absorption and photoluminescence spectra, features in the transient absorption (TA) spectra are assigned to different charge carrier processes, time constants of which are determined in fitting the transient kinetics. Immediately after photoexcitation, the charge carrier thermalization process occurs within the instrument response function time (fwhm ∼ 350 fs) and results in a quasi-equilibrium distribution of charge carriers. It is followed by charge carrier cooling on a sub-picosecond time scale (τ c ∼ 300 fs). The ensuing charge carrier recombination process obeys the rate law of a second-order reaction, which suggests that it occurs mainly via the bimolecular nongeminate recombination process. Dependence of the charge recombination rate constant (k r ) on the initial charge carrier density ([n 0 ]) has also been investigated in fluence dependence measurements. Although in general a linear relationship is observed, the sensitivity of k r to [n 0 ] is strikingly different for the three perovskite nanostructures studied in the present work, signifying the strong impact of quantum confinement on exciton dynamics. Absence of monomolecular geminate recombination and strong dependence of the bimolecular nongeminate recombination on the charge carrier density are attributed to formation of strong-coupling polarons and self-trapping of electrons. In addition to state filling, stimulated emission, and photoinduced intraband absorption signals, TA spectra are further complicated by band gap renormalization. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains.
Photocatalytic polymers offer an alternative to prevailing organometallics and nanomaterials, and they may benefit from polymer-mediated catalytic and material enhancements. MPC-1 , a polymer photoredox catalyst reported herein, exhibits enhanced catalytic activity arising from charge transfer states (CTSs) between its two chromophores. Oligomeric and polymeric MPC-1 preparations both promote efficient hydrodehalogenation of α -halocarbonyl compounds while exhibiting different solubility properties. The polymer is readily recovered by filtration. MPC-1 -coated vessels enable batch and flow photocatalysis, even with opaque reaction mixtures, via “backside irradiation.” Ultrafast transient absorption spectroscopy indicates a fast charge-transfer process within 20 ps of photoexcitation. Time-resolved photoluminescence measurements reveal an approximate 10 ns lifetime for bright valence states. Ultrafast measurements suggest a long CTS lifetime. Empirical catalytic activities of small-molecule models of MPC-1 subunits support the CTS hypothesis. Density functional theory (DFT) and time-dependent DFT calculations are in good agreement with experimental spectra, spectral peak assignment, and proposed underlying energetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.