The abnormal regulation of alternative splicing is usually accompanied by the occurrence and development of tumors, which would produce multiple different isoforms and diversify protein expression. The aim of the present study was to conduct a systematic review in order to describe the regulatory mechanisms of alternative splicing, as well as its functions in tumor cells, from proliferation and apoptosis to invasion and metastasis, and from angiogenesis to metabolism. The abnormal splicing events contributed to tumor progression as oncogenic drivers and/or bystander factors. The alterations in splicing factors detected in tumors and other mis-splicing events (i.e., long non-coding and circular RNAs) in tumorigenesis were also included. The findings of recent therapeutic approaches targeting splicing catalysis and splicing regulatory proteins to modulate pathogenically spliced events (including tumor-specific neo-antigens for cancer immunotherapy) were introduced. The emerging RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms were also discussed. However, further studies are still required to address the association between alternative splicing and cancer in more detail.
Aim: To investigate whether asiatic acid (AA), a pentacyclic triterpene in Centella asiatica, exerted neuroprotective effects in vitro and in vivo, and to determine the underlying mechanisms. Methods: human neuroblastoma Sh-SY5Y cells were used for in vitro study. Cell viability was determined with the MTT assay. hoechst 33342 staining and flow cytometry were used to examine the apoptosis. The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were measured using fluorescent dye. PGC-1α and Sirt1 levels were examined using Western blotting. Neonatal mice were given monosodium glutamate (2.5 mg/g) subcutaneously at the neck from postnatal day (PD) 7 to 13, and orally administered with AA on PD 14 daily for 30 d. The learning and memory of the mice were evaluated with the Morris water maze test. hE staining was used to analyze the pyramidal layer structure in the CA1 and CA3 regions. Results: Pretreatment of Sh-SY5Y cells with AA (0.1-100 nmol/L) attenuated toxicity induced by 10 mmol/L glutamate in a concentration-dependent manner. AA 10 nmol/L significantly decreased apoptotic cell death and reduced reactive oxygen species (ROS), stabilized the mitochondrial membrane potential (MMP), and promoted the expression of PGC-1α and Sirt1. In the mice models, oral administration of AA (100 mg/kg) significantly attenuated cognitive deficits in the Morris water maze test, and restored lipid peroxidation and glutathione and the activity of SOD in the hippocampus and cortex to the control levels. AA (50 and 100 mg/kg) also attenuated neuronal damage of the pyramidal layer in the CA1 and CA3 regions. Conclusion: AA attenuates glutamate-induced cognitive deficits of mice and protects SH-SY5Y cells against glutamate-induced apoptosis in vitro.
Recent studies have shown that miRNAs can target the promoter and CDS region. Thus, we predicted miRNA target sites in the 5'-UTR, CDS and 3'-UTR of Homo sapiens, Mus musculus and Drosophila melanogaster using miRanda and TargetScan. Target-site densities normalized with the average region length were higher in the 5'-UTR than 3'-UTR in all three organisms but were lower in the negative data set. Interestingly, the putative target sites were more conserved than non-target regions in both the 5'-UTR and 3'-UTR, implying that target sites in the 5'-UTR are subject to high selective pressure and might be functional. In Drosophila, 48 of 78 (61.5%) miRNAs showed high similarities with predicted siRNAs. Based on the results of previous experimental studies and a large-scale statistical analysis, we conclude that miRNA-mediated regulation is not limited to the 3'-UTR. However, the functionality of target sites in the 5'-UTR and CDS requires thorough investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.