SUMOylation is a dynamic process, catalyzed by SUMO-specific ligases and reversed by Sentrin/SUMO-specific proteases (SENPs). The physiologic consequences of SUMOylation and deSUMOylation are not fully understood. Here we investigate the phenotypes of mice lacking SENP1 and find that SENP1(-/-) embryos show severe fetal anemia stemming from deficient erythropoietin (Epo) production and die midgestation. We determine that SENP1 controls Epo production by regulating the stability of hypoxia-inducible factor 1alpha (HIF1alpha) during hypoxia. Hypoxia induces SUMOylation of HIF1alpha, which promotes its binding to a ubiquitin ligase, von Hippel-Lindau (VHL) protein, through a proline hydroxylation-independent mechanism, leading to its ubiquitination and degradation. In SENP1(-/-) MEFs, hypoxia-induced transcription of HIF1alpha-dependent genes such as vascular endothelial growth factor (VEGF) and glucose transporter 1 (Glut-1) is markedly reduced. These results show that SENP1 plays a key role in the regulation of the hypoxic response through regulation of HIF1alpha stability and that SUMOylation can serve as a direct signal for ubiquitin-dependent degradation.
A recently developed proteomics strategy, designated tagging-viasubstrate (TAS) approach, is described for the detection and proteomic analysis of farnesylated proteins. TAS technology involves metabolic incorporation of a synthetic azido-farnesyl analog and chemoselective derivatization of azido-farnesyl-modified proteins by an elegant version of Staudinger reaction, pioneered by the Bertozzi group, using a biotinylated phosphine capture reagent. The resulting protein conjugates can be specifically detected and͞or affinity-purified by streptavidin-linked horseradish peroxidase or agarose beads, respectively. Thus, the technology enables global profiling of farnesylated proteins by enriching farnesylated proteins and reducing the complexity of farnesylation subproteome. Azido-farnesylated proteins maintain the properties of protein farnesylation, including promoting membrane association, Ras-dependent mitogen-activated protein kinase kinase activation, and inhibition of lovastatin-induced apoptosis. A proteomic analysis of farnesylated proteins by TAS technology revealed 18 farnesylated proteins, including those with potentially novel farnesylation motifs, suggesting that future use of this method is likely to yield novel insight into protein farnesylation. TAS technology can be extended to other posttranslational modifications, such as geranylgeranylation and myristoylation, thus providing powerful tools for detection, quantification, and proteomic analysis of posttranslationally modified proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.