After the completion of fracturing operation in coalbed methane (CBM), the fracturing fluid needs to flow back to the ground in time to reduce the damage to the coal reservoir. The damage of guar-based fracturing fluid to the coal reservoir has an adverse effect on the fracturing stimulation. A series of flow experiments were carried out with the unconventional natural gas reservoir damage evaluation equipment. This paper investigates the evolution of fracture permeability in coal samples during the process of hydroxypropyl guar (HPG) fracturing fluid flow back. The experimental results show that the fracturing fluid concentration, proppant type, proppant particle size, and proppant concentration all affect fracture permeability. The high concentration of fracturing fluid caused irreversible damage to fracture permeability of coal samples. With the increase of fracturing fluid concentration, the permeability damage rate increased from 65.31% to 84.57%, and the damage degree was strong. KCL brine flushing can only decrease the damage rate of coal sample fracture permeability within a certain range. The proppant embedment and the generation of pulverized coal exacerbated the damage of fracture permeability. The research results can be beneficial for optimizing the type and performance of fracturing fluid for hydraulic fracturing in CBM reservoir.
In order to reveal the influence of particles on fluid flow characteristics in rough fractures under fluid-solid coupling, a range of fracture systems with varying roughness were generated using the Weierstrass-Mandelbrot function. Fluid-particle interactions in rough fractal fractures were simulated using the immersed boundary-lattice Boltzmann method. In this paper, the effects of fluid viscosity, particle size, particle quantity, fracture fractal dimension, and particle grading composition are studied. Results illustrate that increasing fluid viscosity hinders the movement of particles, resulting in the decreasing of particle velocity. As particle size and particle quantity increase, the particle occupation of the channel area grows larger, which lead to lower permeability of the channel. Increasing fracture fractal dimension surges the curvature of the fluid channel, but permeability has a negative exponential correlation to fractal dimension. With increasing particle grading composition, the blocking effect of particles on fracture flow also increases with increasing particle proportion.
Coalbed methane (CBM) has been exploited in the deep area of the coal reservoir (>1000 m). The production of CBM vertical wells is low because of the high in situ stress, large buried depth, and low permeability of the coal reservoir. In this paper, efficient and advanced CBM development technology has been applied in the Libi Block of the Qinshui Basin. According to the characteristics of the coal reservoir in the Libi Block, the coiled tubing fracturing technology has been implemented in four cluster horizontal wells. Staged fracturing of horizontal wells can link more natural fracture networks. It could also expand the pressure drop range and control area of the single well. This fracturing technology has achieved good economic results in the Libi Block, with the maximum production of a single horizontal well being 25313 m3/d and the average single well production having increased by more than 60% from 5000 m3/d to 8000 m3/d. Based on the data regarding the bottom hole pressure, water production, and gas production, the production curves of four wells, namely, Z5P-01L, Z5P-02L, Z5P-03L, and Z5P-04L, were investigated. Furthermore, a production system with slow and stable depressurization was obtained. The bottom hole pressure drops too fast, which results in decreasing permeability and productivity. In this work, a special jet pump and an intelligent remote production control system for the CBM wells were developed; hence, a CBM production technology suitable for the Libi Block was established. The maximum release for the CBM well productivity was obtained, thus providing theoretical and technical support for CBM development with geological and engineering challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.