Fuzz testing is the process of testing programs by continually producing unique inputs in order to detect and identify security flaws. It is often used in vulnerability mining. The most prevalent fuzzing approach is grey-box fuzzing, which combines lightweight code instrumentation with data-feedback-driven generation of fresh program input seeds. AFL (American Fuzzy Lop) is an outstanding grey-box fuzzing tool that is well known for its quick fork server execution, dependable genetic algorithm, and numerous mutation techniques. AFLGO proposes and executes power scheduling based on a simulated annealing process for a more appropriate energy allocation to seeds, however it is neither reliable nor successful. To tackle this issue, we offer an energy-dynamic scheduling strategy based on the algorithm of the fruit fly. Adjusting the energy of the seeds dynamically controls the production of test cases. The findings demonstrate that the approach suggested in this research can test the target region more rapidly and thoroughly and has a high application value for patch testing and vulnerability replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.