The hormone gibberellin (GA) is crucial for internode elongation in sugarcane. DELLA proteins are critical negative regulators of the GA signaling pathway. ScGAI encodes a DELLA protein that was previously implicated in the regulation of sugarcane culm development. Here, we characterized ScGAI-like (ScGAIL) in sugarcane, which lacked the N-terminal region but was otherwise homologous to ScGAI. ScGAIL differed from ScGAI in its chromosomal location, expression patterns, and cellular localization. Although transgenic Arabidopsis overexpressing ScGAIL were insensitive to GAs, GA synthesis was affected in these plants, suggesting that ScGAIL disrupted the GA signaling pathway. After GA treatment, the expression patterns of GA-associated genes differed between ScGAIL-overexpressing and wild-type Arabidopsis, and the degradation of AtDELLA proteins in transgenic lines was significantly inhibited compared to wild-type lines. A sugarcane GID1 gene (ScGID1) encoding a putative GA receptor was isolated and interacted with ScGAIL in a GA-independent manner. Five ScGAIL-interacting proteins were verified by the yeast two-hybrid assays, of which only one interacted with ScGAI. Therefore, ScGAIL might inhibit plant growth by modulating the GA signaling pathway.
IntroductionReceptor-like cytoplastic kinases (RLCKs) are known in many plants to be involved in various processes of plant growth and development and regulate plant immunity to pathogen infection. Environmental stimuli such as pathogen infection and drought restrict the crop yield and interfere with plant growth. However, the function of RLCKs in sugarcane remains unclear.Methods and resultsIn this study, a member of the RLCK VII subfamily, ScRIPK, was identified in sugarcane based on sequence similarity to the rice and Arabidopsis RLCKs. ScRIPK was localized to the plasma membrane, as predicted, and the expression of ScRIPK was responsive to polyethylene glycol treatment and Fusarium sacchari infection. Overexpression of ScRIPK in Arabidopsis enhanced drought tolerance and disease susceptibility of seedlings. Moreover, the crystal structure of the ScRIPK kinase domain (ScRIPK KD) and the mutant proteins (ScRIPK-KD K124R and ScRIPK-KD S253A|T254A) were characterized in order to determine the activation mechanism. We also identified ScRIN4 as the interacting protein of ScRIPK.DiscussionOur work identified a RLCK in sugarcane, providing a potential target for sugarcane responses to disease infection and drought, and a structural basis for kinase activation mechanisms.
DELLA proteins are important repressors of GA signaling, regulating plant development and defense responses through crosstalk with various phytohormones. Sugarcane ScGAI encodes a DELLA protein that regulates culm development. However, it is unclear which transcription factors mediate the transcription of ScGAI. Here, we identified two different ScGAI promoter sequences that cooperatively regulate ScGAI transcription. We also identified a nuclear-localized AP2 family transcription factor, ScAIL1, which inhibits the transcription of ScGAI by directly binding to two ScGAI promoters. ScAIL1 was expressed in all sugarcane tissues tested and was induced by GA and various stressors, including NaCl, PEG, and pathogenic fungi and bacteria. Overexpression of ScAIL1 in rice significantly improved resistance to bacterial blight and rice blast, while reducing growth and development. In addition, several genes associated with stress responses were significantly upregulated in transgenic rice overexpressing ScAIL1. Endogenous phytohormone content and expression analysis further revealed that ScAIL1-overexpression lines improved resistance to bacterial blight and rice blast instead of promoting growth, and that this response was associated with increased JA synthesis and GA inactivation. These results provided molecular evidence that the role of ScAIL1 in the plant defense response is related to JA and GA signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.