The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.201906641. Development of high-performance carbon dots (CDs) with emission wavelength longer than 660 nm (deep red emission) is critical in deep-tissue bioimaging, yet it is still a major challenge to obtain CDs with both narrow full width at half maximum (FWHM) and high deep red/ near-infrared emission yield. Here, deep red emissive carbonized polymer dots (CPDs) with unprecedented FWHM of 20 nm are synthesized. The purified CPDs in dimethyl sulfoxide (DMSO) solution possess quantum yield (QY) as high as 59% under 413 nm excitation, as well as recorded QY of 31% under 660 nm excitation in the deep red fluorescent window. Detailed characterizations identify that CPDs have unique polymer characteristics, consisting of carbon cores and the shells of polymer chains, and π conjugated system formed with N heterocycles and aromatic rings governs the single photoluminescence (PL) center, which is responsible for high QY in deep red emissive CPDs with narrow FWHM. The CPDs exhibit strong absorption and emission in the deep red light region, low toxicity, and good biocompatibility, making them an efficient probe for both one-photon and two-photon bioimaging. CPDs are rapidly excreted via the kidney system and hepatobiliary system.
Genetic reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) could offer replenishable cell sources for transplantation therapies. To fulfill their promises, human iPSCs will ideally be free of exogenous DNA (footprint-free), and be derived and cultured in chemically defined media free of feeder cells. Currently, methods are available to enable efficient derivation of footprint-free human iPSCs. However, each of these methods has its limitations. We have previously derived footprint-free human iPSCs by employing episomal vectors for transgene delivery, but the process was inefficient and required feeder cells. Here, we have greatly improved the episomal reprogramming efficiency using a cocktail containing MEK inhibitor PD0325901, GSK3β inhibitor CHIR99021, TGF-β/Activin/Nodal receptor inhibitor A-83-01, ROCK inhibitor HA-100 and human leukemia inhibitory factor. Moreover, we have successfully established a feeder-free reprogramming condition using chemically defined medium with bFGF and N2B27 supplements and chemically defined human ESC medium mTeSR1 for the derivation of footprint-free human iPSCs. These improvements enabled the routine derivation of footprint-free human iPSCs from skin fibroblasts, adipose tissue-derived cells and cord blood cells. This technology will likely be valuable for the production of clinical-grade human iPSCs.
Iron oxide (Fe3O4), polydopamine (PDA), and in particular their composites are examples of the safest nanomaterials for developing multifunctional nanodevices to perform noninvasive tumor diagnosis and therapy. However, the structures and performances of Fe3O4-PDA nanocomposites should be further perfected to enhance the theranostic efficiency. In this work, we demonstrate the fabrication of PDA-capped Fe3O4 (Fe3O4@PDA) superparticles (SPs) employing preassembled Fe3O4 nanoparticles (NPs) as the cores. Owing to the collective effect of preassembled Fe3O4 NPs, the superparamagnetism and photothermal performance of Fe3O4@PDA SPs are greatly enhanced, thus producing nanodevices with improved magnetic resonance imaging (MRI)-guided photothermal efficiency. Systematical studies reveal that the molar extinction coefficient of the as-assembled Fe3O4 SPs is 3 orders of magnitude higher than that of individual Fe3O4 NPs. Also due to the high aggregation degree of Fe3O4 NPs, the T2-weighted MRI contrast is greatly enhanced for the SPs with r2 relaxivity of 230.5 mM(-1) s(-1), which is ∼2.5 times larger than that of individual Fe3O4 NPs. The photothermal stability, physiological stability, and biocompatibility, as well as the photothermal performance of Fe3O4 SPs, are further improved by enveloping with PDA shell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.