A curvature sensor based on a polarization-dependent in-fiber Mach-Zehnder interferometer (MZI) is proposed. The MZI is fabricated by core-offset fusion splicing one section of polarization maintaining fiber (PMF) between two single mode fibers (SMFs). Two independent interference patterns corresponding to the two orthogonal polarization modes for the PMF are obtained. The couple efficiency between the core mode and the cladding mode decreased with the increasing of the bending on the MZI part. The curvature variation on the MZI part can be obtained by detecting the fringe visibility of the interference patterns. A difference arithmetic demodulation method is used to reduce the effects of the light source power fluctuations and temperature cross-sensitivity. Experimental results show that maximal sensitivity of -0.882 dB/m(-1) is obtained under a measurement range of 0.1 to 0.35 m(-1) for the curvature sensor. With the use of difference arithmetic demodulation method, the temperature-curvature cross-sensitivity and light source power fluctuations effects on the proposed sensor are decreased by 94% and 91%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.