Purpose: Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment. Patients and Methods: We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models. Results: Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-toneutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability. Conclusion: Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.
ObjectiveThe mortality of colorectal cancer patients with pelvic bone metastasis is imminent, and timely diagnosis and intervention to improve the prognosis is particularly important. Therefore, this study aimed to build a bone metastasis prediction model based on Gray level Co-occurrence Matrix (GLCM) - based Score to guide clinical diagnosis and treatment.MethodsWe retrospectively included 614 patients with colorectal cancer who underwent pelvic multiparameter magnetic resonance image(MRI) from January 2015 to January 2022 in the gastrointestinal surgery department of Gezhouba Central Hospital of Sinopharm. GLCM-based Score and Machine learning algorithm, that is,artificial neural net7work model(ANNM), random forest model(RFM), decision tree model(DTM) and support vector machine model(SVMM) were used to build prediction model of bone metastasis in colorectal cancer patients. The effectiveness evaluation of each model mainly included decision curve analysis(DCA), area under the receiver operating characteristic (AUROC) curve and clinical influence curve(CIC).ResultsWe captured fourteen categories of radiomics data based on GLCM for variable screening of bone metastasis prediction models. Among them, Haralick_90, IV_0, IG_90, Haralick_30, CSV, Entropy and Haralick_45 were significantly related to the risk of bone metastasis, and were listed as candidate variables of machine learning prediction models. Among them, the prediction efficiency of RFM in combination with Haralick_90, Haralick_all, IV_0, IG_90, IG_0, Haralick_30, CSV, Entropy and Haralick_45 in training set and internal verification set was [AUC: 0.926,95% CI: 0.873-0.979] and [AUC: 0.919,95% CI: 0.868-0.970] respectively. The prediction efficiency of the other four types of prediction models was between [AUC: 0.716,95% CI: 0.663-0.769] and [AUC: 0.912,95% CI: 0.859-0.965].ConclusionThe automatic segmentation model based on diffusion-weighted imaging(DWI) using depth learning method can accurately segment the pelvic bone structure, and the subsequently established radiomics model can effectively detect bone metastases within the pelvic scope, especially the RFM algorithm, which can provide a new method for automatically evaluating the pelvic bone turnover of colorectal cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.