Matrix metalloproteinase-7 (MMP-7) is a secreted endopeptidase that degrades a broad range of substrates. Recent studies have identified MMP-7 as an early biomarker to predict severe acute kidney injury (AKI) and poor outcomes after cardiac surgery; however, the role of MMP-7 in the pathogenesis of AKI is unknown. In this study, we investigated the expression of MMP-7 and the impact of MMP-7 deficiency in several models of AKI. MMP-7 was induced in renal tubules following ischemia/ reperfusion injury or cisplatin administration, and in folic acid-induced AKI. MMP-7 knockout mice experienced higher mortality, elevated serum creatinine, and more severe histologic lesions after ischemic or toxic insults. Tubular apoptosis and interstitial inflammation were more prominent in MMP-7 knockout kidneys. These histologic changes were accompanied by increased expression of FasL and other components of the extrinsic apoptotic pathway, as well as increased expression of pro-inflammatory chemokines. In a rescue experiment, exogenous MMP-7 ameliorated kidney injury in MMP-7 knockout mice after ischemia/ reperfusion. In vitro, MMP-7 protected tubular epithelial cells against apoptosis by directly degrading FasL. In isolated tubules ex vivo, MMP-7 promoted cell proliferation by degrading E-cadherin and thereby liberating b-catenin, priming renal tubules for regeneration. Taken together, these results suggest that induction of MMP-7 is protective in AKI by degrading FasL and mobilizing b-catenin, thereby priming kidney tubules for survival and regeneration.Matrix metalloproteinase-7 (MMP-7) is an early and valuable biomarker for predicting severe AKI and poor outcomes in patients after cardiac surgery. The present study indicates that induction of endogenous MMP-7 is protective in AKI by priming kidney tubules to survival and regeneration. These results suggest that other urinary biomarkers of the early phase of AKI manifest an initial attempt of the kidney to protect against injury and to promote repair after AKI. Whether infusion of exogenous MMP-7 can protect kidneys against AKI in patients warrants further investigation. www.kidney-international.org b a s i c r e s e a r c h Kidney International (2019) 95, 1167-1180
Endothelial cell injury leading to microvascular rarefaction is a characteristic feature of chronic kidney disease (CKD). However, the mechanism underlying endothelial cell dropout is poorly defined. Here, we show a central role of the extracellular microenvironment in controlling endothelial cell survival and proliferation in CKD. When cultured on a decellularized kidney tissue scaffold (KTS) from fibrotic kidney, endothelial cells increased the expression of proapoptotic proteins. Proteomics profiling identified fibrillin-1 (FBN1) as a key component of the fibrotic KTS, which was up-regulated in animal models and patients with CKD. FBN1 induced apoptosis of endothelial cells and inhibited their proliferation in vitro. RNA sequencing uncovered activated integrin αvβ6/transforming growth factor–β signaling, and blocking this pathway abolished FBN1-triggered endothelial injury. In a mouse model of CKD, depletion of FBN1 ameliorated renal fibrotic lesions and mitigated vascular rarefaction. These studies illustrate that FBN1 plays a role in mediating vascular rarefaction by orchestrating a hostile microenvironment for endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.