Vaccination is a key strategy to prevent the pandemic caused by the coronavirus disease 2019 (COVID-19). This study aims to investigate the willingness of Chinese adults to be vaccinated against COVID-19 and further explore the factors that may affect their willingness. We used a self-design anonymous questionnaire to conduct an online survey via the Sojump. A total of 1009 valid questionnaires were analyzed. The age of the participants ranged from 18 to 74. Among them, 609 (60.4%, 95%CI: 57.4–63.4%) were willing to receive the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Logistic regression analysis results showed that the age of 30-49 (OR = 2.042, 95%CI: 1.098–3.799), universities and colleges education (OR = 1.873, 95% CI = 1.016–3.451), master degree or above education (OR = 1.885, 95%CI = 1.367–2.599), previous influenza vaccination history (OR = 2.176, 95%CI: 1.474–3.211), trust in the effectiveness of the vaccine (OR = 6.419, 95%CI: 3.717–11.086), and close attention to the latest news of the vaccine (OR = 1.601, 95%CI: 1.046–2.449) were facilitative factors that affected their willingness to be vaccinated. More than half of the adults in China would be willing to receive a SARS-CoV-2 vaccine. Middle-aged people with higher education, those who had been vaccinated against influenza, and those who believed that COVID-19 vaccine was effective and paid close attention to it were more willing to be vaccinated. Our findings can provide reference for the implementation of vaccination and the prevention of COVID-19 in China. More studies are needed after the vaccine is launched.
The Internet of Things (IoT) is impacting the world’s connectivity landscape. More and more IoT devices are connected, bringing many benefits to our daily lives. However, the influx of IoT devices poses non-trivial challenges for the existing cloud-based computing paradigm. In the cloud-based architecture, a large amount of IoT data is transferred to the cloud for data management, analysis, and decision making. It could not only cause a heavy workload on the cloud but also result in unacceptable network latency, ultimately undermining the benefits of cloud-based computing. To address these challenges, researchers are looking for new computing models for the IoT. Edge computing, a new decentralized computing model, is valued by more and more researchers in academia and industry. The main idea of edge computing is placing data processing in near-edge devices instead of remote cloud servers. It is promising to build more scalable, low-latency IoT systems. Many studies have been proposed on edge computing and IoT, but a comprehensive survey of this crossover area is still lacking. In this survey, we firstly introduce the impact of edge computing on the development of IoT and point out why edge computing is more suitable for IoT than other computing paradigms. Then, we analyze the necessity of systematical investigation on the edge-computing-driven IoT (ECDriven-IoT) and summarize new challenges occurred in ECDriven-IoT. We categorize recent advances from bottom to top, covering six aspects of ECDriven-IoT. Finally, we conclude lessons learned and propose some challenging and worthwhile research directions.
This study aims to explore the relationship between the doses of inactivated COVID-19 vaccines received and SARS-CoV-2 Omicron infection in the real-world setting, so as to preliminarily evaluate the protective effect induced by COVID-19 vaccination. We conducted a test-negative case-control study and recruited the test-positive cases and test-negative controls in the outbreak caused by Omicron BA.2 in April 2022 in Guangzhou, China. All the participants were 3 years and older. The vaccination status between the case group and the control group was compared in the vaccinated and all participants, respectively, to estimate the immune protection of inactivated COVID-19 vaccines. After adjusting for sex and age, compared with a mere single dose, full vaccination of inactivated COVID-19 vaccines (OR = 0.191, 95% CI: 0.050 to 0.727) and booster vaccination (OR = 0.091, 95% CI: 0.011 to 0.727) had a more superior protective effect. Compared with one dose, the second dose was more effective in males (OR = 0.090), as well as two doses (OR = 0.089) and three doses (OR = 0.090) among individuals aged 18–59. Whereas, when compared with the unvaccinated, one dose (OR = 7.715, 95% CI: 1.904 to 31.254) and three doses (OR = 2.055, 95% CI: 1.162 to 3.635) could contribute to the increased risk of Omicron infection after adjusting for sex and age. Meanwhile, by contrast with unvaccinated individuals, the result of increased risk was also manifested in the first dose in males (OR = 12.400) and one dose (OR = 21.500), two doses (OR = 1.890), and a booster dose (OR = 1.945) in people aged 18–59. In conclusion, the protective effect of full and booster vaccination with inactivated COVID-19 vaccines exceeded the incomplete vaccination, of which three doses were more effective. Nevertheless, vaccination may increase the risk of Omicron infection compared with unvaccinated people. This may result from the transmission traits of BA.2, the particularity and stronger protection awareness of the unvaccinated population, as well as the ADE effect induced by the decrease of antibody titers after a long time of vaccination. It is crucial to explore this issue in depth for the formulation of future COVID-19 vaccination strategies.
Coronavirus disease 2019 (COVID-19) continues to constitute an international public health emergency. Vaccination is a prospective approach to control this pandemic. However, apprehension about the safety of vaccines is a major obstacle to vaccination. Amongst health professionals, one evident concern is the risk of antibody-dependent enhancement (ADE), which may increase the severity of COVID-19. To explore whether ADE occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and increase confidence in the safety of vaccination, we conducted a meta-analysis to investigate the relationship between post-immune infection and disease severity from a population perspective. Databases, including PubMed, EMBASE, Chinese National Knowledge Infrastructure, SinoMed, Scopus, Science Direct, and Cochrane Library, were searched for articles on SARS-CoV-2 reinfection published until 25 October 2021. The papers were reviewed for methodological quality, and a random effects model was used to analyse the results. Heterogeneity was assessed using the I2 statistic. Publication bias was evaluated using a funnel plot and Egger’s test. Eleven studies were included in the final meta-analysis. The pooled results indicated that initial infection and vaccination were protective factors against severe COVID-19 during post-immune infection (OR = 0.55, 95%CI = 0.31–0.98). A subgroup (post-immune infection after natural infection or vaccination) analysis showed similar results. Primary SARS-CoV-2 infection and vaccination provide adequate protection against severe clinical symptoms after post-immune infection. This finding demonstrates that SARS-CoV-2 may not trigger ADE at the population level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.