The Sen Transformer (ST) provides an economical solution for power flow control and voltage regulation. However, fault analysis and evaluation of the performance of the transmission protection system in the presence of a ST have not been investigated. Hence, a short-circuit model of the ST using the phase coordinate method is proposed in this paper. Firstly, according to the coupled-circuit ST model, the nodal admittance matrix between the sending end and receiving end of the ST was deduced. Subsequently, a fully decoupled mathematical model was established that can reflect three characteristics, including its winding connection structure, electrical parameters, and ground impedance. Thus, with the help of the phase-coordinate-based solving methodology, a short-circuit ST model may be built for various short-circuit faults. The MATLAB and PSCAD/EMTDC software were employed to carry out simulated analyses for an equivalent two-bus system. The short-circuit currents obtained from the time-domain simulation and the analytic calculation utilizing the proposed model reached an acceptable agreement, confirming the simulation’s effectiveness. Moreover, the variation of the fault currents with the variation of the compensating voltage after single-phase-to-ground and three-phase short-circuit faults was demonstrated and used to analyze the effect of the ST on the fault currents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.