1,4-Dihydropyridine and pyridine derivatives bound to three subtypes of adenosine receptors in the micromolar range. Affinity was determined in radioligand binding assays at rat brain A1 and A2A receptors using [3H]-(R)-PIA [[3H]-(R)-N6-(phenylisopropyl)adenosine] and [3H]CGS 21680 [[3H]-2-[[4-(2-carboxyethyl)phenyl]ethylamino]-5'-(N-ethylcarbamoyl++ +) adenosine], respectively. Affinity was determined at cloned human and rat A3 receptors using [125I]AB-MECA [N6-(4-amino-3-iodobenzyl)-5'-(N-methylcarbamoyl)adenosine]. Structure-activity analysis at adenosine receptors indicated that sterically bulky groups at the 4-, 5-, and 6-positions are tolerated. (R,S)-Nicardipine, 12, displayed Ki values of 19.6 and 63.8 microM at rat A1 and A2A receptors, respectively, and 3.25 microM at human A3 receptors. Similarly, (R)-niguldipine, 14, displayed Ki values of 41.3 and 1.90 microM at A1 and A3 receptors, respectively, and was inactive at A2A receptors. A preference for the R- vs the S-enantiomer was observed for several dihydropyridines at adenosine receptors, in contrast with the selectivity at L-type Ca2+ channels. A 4-trans-beta-styryl derivative, 24, with a Ki value of 0.670 microM at A3 receptors, was 24-fold selective vs A1 receptors (Ki = 16.1 microM) and 74-fold vs A2A receptors (Ki = 49.3 microM). The affinity of 24 at L-type Ca2+ channels, measured in rat brain membranes using [3H]isradipine, indicated a Ki value of 0.694 microM, and the compound is thus nonselective between A3 receptors and L-type Ca2+ channels. Inclusion of a 6-phenyl group enhanced A3 receptor selectivity: Compound 28 (MRS1097; 3,5-diethyl 2-methyl-6-phenyl-4-(trans-2-phenylvinyl)-1,4(R,S)-dihydro-pyridin e-3, 5-dicarboxylate) was 55-fold selective vs A1 receptors, 44-fold selective vs A2A receptors, and over 1000-fold selective vs L-type Ca2+ channels. In addition, compound 28 attenuated the A3 agonist-elicited inhibitory effect on adenylyl cyclase. Furthermore, whereas nicardipine, 12, displaced radioligand from the Na(+)-independent adenosine transporter with an apparent affinity of 5.36 +/- 1.51 microM, compound 28 displaced less than 10% of total binding at a concentration of 100 microM. Pyridine derivatives, when bearing a 4-alkyl but not a 4-phenyl group, maintained affinity for adenosine receptors. These findings indicate that the dihydropyridines may provide leads for the development of novel, selective A3 adenosine antagonists.
The adenosine A3 receptor is expressed in brain, but the consequences of activation of this receptor on electrophysiological activity are unknown. We have characterized the actions of a selective adenosine A3 receptor agonist, 2-chloro-N6-(3-lodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), and a selective A3 receptor antagonist, 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1, 4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS 1191), in brain slices from rat hippocampus. In the CA1 region, activation of A3 receptors had no direct effects on synaptically evoked excitatory responses, long-term potentiation, or synaptic facilitation. However, activation of A3 receptors with Cl-IB-MECA antagonized the adenosine A1 receptor-mediated inhibition of excitatory neurotransmission. The effects of Cl-IB-MECA were blocked by pretreatment with MRS 1191, which by itself had no effect on A1 receptor-mediated responses. The presynaptic inhibitory effects of baclofen and carbachol, mediated via GABA(B) and muscarinic receptors, respectively, were unaffected by Cl-IB-MECA. The maximal response to adenosine was unchanged, suggesting that the primary effect of Cl-IB-MECA was to reduce the affinity of adenosine for the receptor rather than to uncouple it. Similar effects could be demonstrated after brief superfusion with high concentrations of adenosine itself. Under normal conditions, endogenous adenosine in brain is unlikely to affect the sensitivity of A1 receptors via this mechanism. However, when brain concentrations of adenosine are elevated (e.g., during hypoxia, ischemia, or seizures), activation of A3 receptors and subsequent heterologous desensitization of A1 receptors could occur, which might limit the cerebroprotective effects of adenosine under these conditions.
The effects of putative A3 adenosine receptor antagonists of three diverse chemical classes (the flavonoid MRS 1067, the 6-phenyl-1,4-dihydropyridines MRS 1097 and MRS 1191, and the triazoloquinazoline MRS 1220) were characterized in receptor binding and functional assays. MRS1067, MRS 1191 and MRS 1220 were found to be competitive in saturation binding studies using the agonist radioligand [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide) at cloned human brain A3 receptors expressed in HEK-293 cells. Antagonism was demonstrated in functional assays consisting of agonist-induced inhibition of adenylate cyclase and the stimulation of binding of [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP-gamma-S) to the associated G-proteins. MRS 1220 and MRS 1191, with KB values of 1.7 and 92 nM, respectively, proved to be highly selective for human A3 receptor vs human A1 receptor-mediated effects on adenylate cyclase. In addition, MRS 1220 reversed the effect of A3 agonist-elicited inhibition of tumor necrosis factor-alpha formation in the human macrophage U-937 cell line, with an IC50 value of 0.3 microM.
1H-benzotriazole (BTri) and 5-tolyltriazole (5-TTri) are emerging pollutants; the development of novel materials for their efficient adsorption and removal is thus of great significance in environmental sciences. Here, we report the application of zeolitic imidazolate framework-8 (ZIF-8) as a novel adsorbent for fast removal of BTri and 5-TTri in aqueous solution in view of adsorption isotherms, kinetics and thermodynamics, desorption, and adsorbent regeneration. The adsorption of BTri and 5-TTri on ZIF-8 was very fast, and most of BTri and 5-TTri were adsorbed in the first 2 min. The adsorption for BTri and 5-TTri follows a pseudo-second-order kinetics and fits the Langmuir adsorption model with the adsorption capacity of 298.5 and 396.8 mg g(-1) for BTri and 5-TTri at 30 °C, respectively. The adsorption was a spontaneous and endothermic process controlled by positive entropy change. No remarkable effects of pH, ionic strength, and dissolved organic matter on the adsorption of BTri and 5-TTri on ZIF-8 were observed. The used ZIF-8 could be regenerated effectively and recycled at least three times without significant loss of adsorption capacity. In addition, ZIF-8 provided much larger adsorption capacity and faster adsorption kinetics than activated carbon and ZIF-7. The hydrophobic and π-π interaction between the aromatic rings of the BTri and 5-TTri and the aromatic imizole rings of the ZIF-8, and the coordination of the nitrogen atoms in BTri and 5-TTri molecules to the Zn(2+) ions in the ZIF-8 framework was responsible for the efficient adsorption. The fast adsorption kinetics, large adsorption capacity, excellent reusability as well as the pH, ionic strength, and dissolved organic matter insensitive adsorption create potential for ZIF-8 to be effective at removing benzotriazoles from aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.