With the development of deep convolutional neural networks, the effect of pedestrian detection has been rapidly improved. However, there are still many problems in small target pedestrian detection, for example noise (such as light) interference, target occlusion, and low detection accuracy. In order to solve the above problems, based on YOLOv4 algorithm, this paper proposes an improved small target pedestrian detection algorithm named PF_YOLOv4. The algorithm is improved in three aspects on the basis of the YOLOv4 algorithm: firstly, a soft thresholding module is added to the residual structure of the backbone network to perform noise reduction process on interference factors, such as light to enhance the robustness of the algorithm; secondly, the depthwise separable convolution replaces the traditional convolution in the YOLOv4 residual structure, to reduce the number of network model parameters; finally, the Convolutional Block Attention Module (CBAM) is added after the output feature map of the backbone network to enhance of the network feature expression. Experimental results show that the PF_YOLOv4 algorithm outperforms most of the state-of-the-art algorithms in detecting small target pedestrians. The mean Average Precision (mAP) of the PF_YOLOv4 algorithm is 2.35% higher than that of the YOLOv4 algorithm and 9.67% higher than that of the YOLOv3 algorithm, while the detection speed is slightly higher than that of YOLOv4 algorithm.INDEX TERMS Small target pedestrian detection, soft thresholding, depthwise separable convolution, convolutional block attention module I. INRTODUCTION
Attention convolutional neural networks (ATT-CNNs) have got a huge gain in picture operating and nature language processing. Shortage of interpretability cannot remain the adoption of deep neural networks. It is very conspicuous that is shown in the prediction model of disease aftermath. Biological data are commonly revealed in a nominal grid data structured pattern. ATT-CNN cannot be applied directly. In order to figure out these issues, a novel method which is called the Path-ATT-CNN is proposed by us, making an explicable ATT-CNN model based on united omics data by making use of a recently characterized pathway image. Path-ATT-CNN shows brilliant predictive demonstration difference in primary lung tumor symptom (PLTS) and non-primary lung tumor symptom (non-PLTS) when applied to lung adenocarcinomas (LADCs). The imaginational tool adoption which is linked with statistical analysis enables the status of essential pathways which finally exist in LADCs. In conclusion, Path-ATT-CNN shows that it can be effectively put into use elucidating omics data in an interpretable mode. When people start to figure out key biological correlates of disease, this mode makes promising power in predicting illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.