Cordyceps militaris is a high-value medicinal and edible fungus that produces many bioactive compounds, including carotenoid, and thus, improving the carotenoid productivity of C. militaris will increase its commercial value. However, little is known about the genetic regulatory mechanism of carotenoid biosynthesis in C. militaris. To further understanding the regulatory mechanism of carotenoid biosynthesis, we performed a large-scale screen of T-DNA insertional mutant library and identified a defective mutant, denoted T111, whose colonies did not change color from white to yellow upon exposure to light. Mutation analysis confirmed that a single T-DNA insertion occurred in the gene encoding a 695-amino-acid putative fungal-specific transcription factor with a predicted Zn2Cys6 binuclear cluster DNA-binding domain found uniquely in fungi. Targeted deletion of this gene, denoted C. militaris carotenogenesis regulatory factor 1 (Cmcrf1), generated the ΔCmcrf1 mutant that exhibited drastically reduced carotenoid biosynthesis and failed to generate fruiting bodies. In addition, the ΔCmcrf1 mutant showed significantly increased conidiation and increased hypersensitivity to cell-wall-perturbing agents compared with the wild-type strain. However, the Cmcrf1 gene did not have an impact on the mycelia growth of C. militaris. These results show that Cmcrf1 is involved in carotenoid biosynthesis and is required for conidiation and fruiting body formation in C. militaris.
Fungi uniquely synthesize lysine through the α-aminoadipate pathway. The saccharopine reductase ScLys9 catalyzes the formation of saccharopine from ɑ-aminoadipate 6-semialdehyde, the seventh step in the lysine biosynthesis pathway in Saccharomyces cerevisiae. Here, we characterized the functions of TrLys9, an ortholog of S. cerevisiae ScLys9 in the industrial filamentous fungus Trichoderma reesei. Transcription-level analysis indicated that TrLYS9 expression was higer in the conidia stage than in other stages. Disruption of TrLYS9 led to lysine auxotrophy. Phenotype analysis of the ΔTrlys9 mutant showed that TrLYS9 was involved in fungal development including vegetative growth, conidiation, and conidial germination and lysine biosynthesis. Cellulase production was also impaired in the ΔTrlys9 mutant due to the failure of conidial germination in liquid cellulase-inducing liquid medium. Defects in radial growth and asexual development of the ΔTrlys9 mutant were fully recovered when exogenous lysine was added to the medium. These results imply that TrLys9 is involved in fungal development and lysine biosynthesis in T. reesei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.