Nanoscale metal−organic frameworks (nMOFs) are a unique type of hybrid materials, which are broadly applicable as cargo delivery systems. However, the relatively low material stability and insufficient cancer cell interacting capacity have limited nMOFs' applications in cancer theranostics. Herein, a zirconium-based nMOF UiO-66-N 3 was synthesized, and its surface was covalently functionalized with alkyne-containing polyethylene glycol (PEG) via the azide−alkyne click chemistry. After that, F3 peptide was attached for targeting of cancer cells (the material was denoted as UiO-66-PEG-F3). Doxorubicin (DOX) served as a therapeutic drug and a fluorescent label in this study, and it was transported into UiO-66-PEG conjugates with sufficient drug loading efficiency. pH-responsive release of DOX from UiO-66 conjugates was witnessed. The structural integrity of UiO-66-N 3 was maintained post the surface modification process. Flow cytometry and confocal fluorescence microscopy revealed that DOX/UiO-66-PEG-F3 had stronger accumulation in MDA-MB-231 cells (nucleolin + ) compared with DOX/UiO-66-PEG. In order to track the pharmacokinetic behavior (organ distribution profile) in vivo, the positron-emitting zirconium-89 ( 89 Zr) was incorporated into UiO-66-N 3 . Similar PEGylation and F3 peptide conjugation resulted in the formation of 89 Zr-UiO-66-PEG-F3. Serial positron emission tomography (PET) imaging demonstrated that the preferential accumulation of 89 Zr-UiO-66-PEG-F3 in MDA-MB-231 tumors, and their liver clearance was faster than PEGylated UiO-66 using noncovalent methods. Thus, the PEGylated nMOFs using covalent strategies may find broad application in future cancer theranostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.