As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop yield every year. Therefore, it is urgent to elucidate the mechanisms of drought resistance in rice. In this study, we identified a glycine-rich RNA-binding protein, OsGRP3, in rice. Evolutionary analysis showed that it was closely related to OsGR-RBP4, which was involved in various abiotic stresses. The expression of OsGRP3 was shown to be induced by several abiotic stress treatments and phytohormone treatments. Then, the drought tolerance tests of transgenic plants confirmed that OsGRP3 enhanced drought resistance in rice. Meanwhile, the yeast two-hybrid assay, bimolecular luminescence complementation assay and bimolecular fluorescence complementation assay demonstrated that OsGRP3 bound with itself may affect the RNA chaperone function. Subsequently, the RNA-seq analysis, physiological experiments and histochemical staining showed that OsGRP3 influenced the phenylpropanoid biosynthesis pathway and further modulated lignin accumulation. Herein, our findings suggested that OsGRP3 enhanced drought resistance in rice by altering the phenylpropanoid biosynthesis pathway and further increasing lignin accumulation.
IntroductionThe highly conserved tubby-like proteins (TLPs) play key roles in animal neuronal development and plant growth. The abiotic stress tolerance function of TLPs has been widely explored in plants, however, little is known about comparative studies of TLPs within crops.MethodsBioinformatic identification, phylogenetic analysis, Cis-element analysis, expression analysis, Cis-element analysis, expression analysis and so on were explored to analysis the TLP gene family of multiple crops.ResultsIn this study, a comprehensive analysis of TLP genes were carried out in seven crops to explore whether similar function of TLPs in rice could be achieved in other crops. We identified 20, 9, 14, 11, 12, 35, 14 and 13 TLP genes in Glycine max, Hordeum vulgare, Sorghum bicolor, Arabidopsis thaliana, Oryza sativa Japonica, Triticum aestivum, Setaria italic and Zea mays, respectively. All of them were divided into two groups and ten orthogroups (Ors) based on amino acids. A majority of TLP genes had two domains, tubby-like domain and F-box domain, while members of Or5 only had tubby-like domain. In addition, Or5 had more exons and shorter DNA sequences, showing that characteristics of different Ors reflected the differentiated function and feature of TLP genes in evolutionary process, and Or5 was the most different from the other Ors. Besides, we recognized 25 cis-elements in the promoter of TLP genes and explored multiple new regulation pathway of TLPs including light and hormone response. The bioinformatic and transcriptomic analysis implied the stresses induced expression and possible functional redundancy of TLP genes. We detected the expression level of 6 OsTLP genes at 1 to 6 days after seed germination in rice, and the most obvious changes in these days were appeared in OsTLP10 and OsTLP12.DiscussionCombined yeast two-hybrid system and pull down assay, we suggested that the TLP genes of Or1 may have similar function during seed germination in different species. In general, the results of comprehensive analysis of TLP gene family in multiple species provide valuable evolutionary and functional information of TLP gene family which are useful for further application and study of TLP genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.