The widely used pseudorabies virus (PRV) Bartha-K61 vaccine has played a key role in the eradication of PRV. Since late 2011, however, a disease characterized by neurologic symptoms and a high number of deaths among newborn piglets has occurred among Bartha-K61–vaccinated pigs on many farms in China. Clinical samples from pigs on 15 farms in 6 provinces were examined. The PRV gE gene was detectable by PCR in all samples, and sequence analysis of the gE gene showed that all isolates belonged to a relatively independent cluster and contained 2 amino acid insertions. A PRV (named HeN1) was isolated and caused transitional fever in pigs. In protection assays, Bartha-K61 vaccine provided 100% protection against lethal challenge with SC (a classical PRV) but only 50% protection against 4 challenges with strain HeN1. The findings suggest that Bartha-K61 vaccine does not provide effective protection against PRV HeN1 infection.
Recently pseudorabies outbreaks have occurred in many vaccinated farms in China. To identify genetic characteristics of pseudorabies virus (PRV) strains, we obtained the genomic sequences of PRV strains HeN1 and JS, which were compared to 4 PRV genomes and 729 partial gene sequences. PRV strains isolated in China showed marked sequence divergence compared to European and American strains. Phylogenetic analysis revealed that for the first time PRV can be divided into 2 distinct clusters, with Chinese strains being genotype II and PRVs isolated from other countries being genotype I. Restriction fragment length polymorphism analysis confirmed differences between HeN1 and Bartha strains, as did the presence of unique insertion/deletion polymorphisms and microsatellites. This divergence between the two genotypes may have been generated from long-term, independent evolution, which could also explain the low efficacy of the Bartha vaccine in protecting pigs infected with genotype II PRV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.