Robust high-power narrow-linewidth lasers at 589 nm are required for sodium laser guide star adaptive optics in astronomy. A high-power 589 nm laser based on Raman fiber amplifier is reported here, which works in both continuous-wave and pulsed formats. In the continuous-wave case, the laser produces more than 50 W output. In the pulsed case, the same laser produces square-shaped pulses with tunable repetition rate (500 Hz to 10 kHz) and duration (1 ms to 30 μs). The peak power is as high as 84 W and remains constant during the tuning. The laser also emits an adjustable sideband at 1.71 GHz away from the main laser frequency for better sodium excitation. The versatility of the laser offers much flexibility in laser guide star application.
An up to 44 W, 1 MHz linewidth, 1178 nm CW laser is obtained by Raman amplification of a distributed feedback diode laser in a variably strained polarization-maintaining fiber with a record-high optical efficiency of 52%, pumped by a linearly polarized 1120 nm fiber laser. A polarization extinction ratio of 30 dB is achieved due to the all-polarization-maintaining configuration and the polarization dependence of Raman gain. The strain distribution is designed according to the signal power evolution along the fiber. A 20 times reduction in the effective stimulated Brillouin scattering coefficient is achieved. A 24.3 W 589 nm laser is generated by an external resonant doubling cavity with an optical efficiency of 68.5%. The laser is locked to 589.1591 nm for a laser guide star.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.