Systemic lupus erythematosus (SLE) is a chronic inflammatory disease characterized by multi-system involvement, diverse clinical presentation, and alterations in circulating metabolites. In this study, a (1)H NMR spectroscopy-based metabolomics approach was applied to establish a human SLE serum metabolic profile. Serum samples were obtained from patients with SLE (n = 64), patients with rheumatoid arthritis (RA) (n = 30) and healthy controls (n = 35). The NOESYPR1D spectrum combined with multi-variate pattern recognition analysis was used to cluster the groups and establish a disease-specific metabolites phenotype. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) models were capable of distinguishing SLE or RA patients from healthy subjects. The OPLS-DA model was able to predict diagnosis of SLE with a sensitivity rate of 60.9% and a specificity rate of 97.1%. For diagnosing RA, the model has much higher sensitivity (96.7%) and specificity (91.4%). The SLE serum samples were characterized by reduced concentrations of valine, tyrosine, phenylalanine, lysine, isoleucine, histidine, glutamine, alanine, citrate, creatinine, creatine, pyruvate, high-density lipoprotein, cholesterol, glycerol, formate and increased concentrations of N-acetyl glycoprotein, very low-density lipoprotein and low-density lipoprotein in comparison with the control population. The results not only indicated that serum NMR-based metabolomic methods had sufficient sensitivity and specificity to distinguish SLE and RA from healthy controls, but also have the potential to be developed into a clinically useful diagnostic tool, and could also contribute to a further understanding of disease mechanisms.
Immune thrombocytopenia (ITP) is a disease characterized by isolated thrombocytopenia. Abnormal effector T cell activation is an important mechanism in the pathogenesis of ITP. Regulatory T cells (Treg) have a strong immunosuppressive function for T cell activation and their importance in the pathophysiology and clinical treatment of ITP has been confirmed. Myeloid-derived suppressor cells (MDSCs) are other immunosuppressive cells, which can also suppress T cell activation by secreting arginase, iNOS and ROS, and are essential for Treg cells’ differentiation and maturation. Therefore, we speculate that MDSCs might also be involved in the immune-dysregulation mechanism of ITP. In this study, we tested MDSCs and Treg cells in peripheral blood samples of twenty-five ITP patients and ten healthy donors. We found that MDSCs and Treg cells decreased simultaneously in active ITP patients. Relapsed ITP patients showed lower MDSCs levels compared with new patients. All patients received immunosuppressive treatment including dexamethasone alone or in combination with intravenous immune globulin. We found that MDSCs’ level after treatment correlated with platelet recovery. Our study is the first that focused on MDSCs’ role in ITP. Based on our results, we concluded that circulating MDSCs could predict disease activity and treatment response in ITP patients. This preliminary conclusion indicates a substantial significance of MDSCs in the pathophysiology and clinical treatment of ITP, which deserves further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.