Social recommendation has shown promising improvements over traditional systems since it leverages social correlation data as an additional input. Most existing works assume that all data are available to the recommendation platform. However, in practice, user-item interaction data (e.g., rating) and user-user social data are usually generated by different platforms, both of which contain sensitive information. Therefore, How to perform secure and efficient social recommendation across different platforms, where the data are highly-sparse in nature remains an important challenge. In this work, we bring secure computation techniques into social recommendation, and propose S 3 Rec, a sparsity-aware secure cross-platform social recommendation framework. As a result, S 3 Rec can not only improve the recommendation performance of the rating platform by incorporating the sparse social data on the social platform, but also protect data privacy of both platforms. Moreover, to further improve model training efficiency, we propose two secure sparse matrix multiplication protocols based on homomorphic encryption and private information retrieval. Our experiments on two benchmark datasets demonstrate that S 3 Rec improves the computation time and communication size of the state-of-the-art model by about 40× and 423× in average, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.