On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspirationdriven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics.
Understanding the evolution of human interactive behaviors is important. Recent experimental results suggest that human cooperation in spatial structured population is not enhanced as predicted in previous works, when payoff-dependent imitation updating rules are used. This constraint opens up an avenue to shed light on how humans update their strategies in real life. Studies via simulations show that, instead of comparison rules, self-evaluation driven updating rules may explain why spatial structure does not alter the evolutionary outcome. Though inspiring, there is a lack of theoretical result to show the existence of such evolutionary updating rule. Here we study the aspiration dynamics, and show that it does not alter the evolutionary outcome in various population structures. Under weak selection, by analytical approximation, we find that the favored strategy in regular graphs is invariant. Further, we show that this is because the criterion under which a strategy is favored is the same as that of a well-mixed population. By simulation, we show that this holds for random networks. Although how humans update their strategies is an open question to be studied, our results provide a theoretical foundation of the updating rules that may capture the real human updating rules.
The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.
Update rules, which describe how individuals adjust their behavior over time, affect the outcome of social interactions. Theoretical studies have shown that evolutionary outcomes are sensitive to model details when update rules are imitation-based but are robust when update rules are self-evaluation based. However, studies of self-evaluation based rules have focused on homogeneous population structures where each individual has the same number of neighbors. Here, we consider heterogeneous population structures represented by weighted networks. Under weak selection, we analytically derive the condition for strategy success, which coincides with the classical condition of risk-dominance. This condition holds for all weighted networks and distributions of aspiration levels, and for individualized ways of self-evaluation. Our findings recover previous results as special cases and demonstrate the universality of the robustness property under self-evaluation based rules. Our work thus sheds light on the intrinsic difference between evolutionary dynamics under self-evaluation based and imitation-based update rules.
Globalization facilitates our communication with each other, while it magnifies problems such as overharvesting of natural resources and human-induced climate change. Thus people all over the world are involved in a global social dilemma which calls for worldwide cooperation to reduce the risks of these extreme events and disasters. A collective target (threshold) is required to prevent such events. Everyone may lose their wealth once their total individual contributions fail to reach the threshold. To this end, we establish a model of threshold public goods games in a group-structured population and investigate its evolutionary process. We study multilevel public goods games with defectors, local cooperators, and global cooperators and are primarily concerned with how the global cooperative behavior evolves. We find that, compared with the standard public goods games, the strategy of global cooperation accounts for a bigger proportion in the stationary distribution of threshold public goods games. On the other hand, the fixation time of the global cooperation strategy is greatly shortened with increase of the probability of disaster striking. Therefore, global risks induced by the threshold can effectively promote global cooperation in environmental investment and the reduction of greenhouse gas emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.