When mobile robots run in indoor environment, a large number of similar images are easy to appear in the images collected, probably causing false-positive judgment in loop closure detection based on simultaneous localization and mapping (SLAM). To solve this problem, a loop closure detection algorithm for visual SLAM based on image semantic segmentation is proposed in this paper. Specifically, the current frame is semantically segmented by optimized DeepLabv3+ model to obtain semantic labels in the image. The 3D semantic node coordinates corresponding to each semantic label are then extracted by combining mask centroid and image depth information. According to the distribution of semantic nodes, the DBSCAN density clustering algorithm is adopted to cluster densely distributed semantic nodes to avoid mismatching due to the close distance of semantic nodes in the subsequent matching process. Finally, the multidimensional similarity comparison of first rough and then fine is adopted to screen the candidate frames of loop closure from key frames and then confirm the real loop closure to complete accurate loop closure detection. Testing with public datasets and self-filmed datasets, experimental results show that being well adapted to illumination change, viewpoint deviation, and item movement or missing, the proposed algorithm can effectively improve the accuracy of loop closure detection in indoor environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.