Commonly used robot map models include occupancy grid maps, topological maps, and semantic maps. Among these, an occupancy grid map is mainly represented as a quadrilateral grid. This paper proposes an occupancy information grid for intelligent robots by exploiting the advantages of the occupancy grid map and spatial information grid. In terms of geometric structure, a regular hexagonal grid is used instead of a regular quadrilateral grid. In terms of attribute structure, the single obstacle attribute is replaced by the grid terrain characteristics, grid element attributes, and grid edge attributes. Thus, the occupancy information grid model is transformed into a new data structure describing the spatial environment, and it can be effectively applied to map construction and path planning of intelligent robots. For the map construction application of intelligent robots, this paper describes the basic process of laser sensor-based grid model construction. For the path planning application of intelligent robots, this paper extends the A* algorithm based on a regular hexagonal grid. Additionally, map construction and path planning applications for intelligent robots are experimentally verified. Several experimental results were obtained. First, the experimental results confirmed the theoretical conclusion that the minimum sampling density of the hexagonal structure was 13.4% lower than that of the quadrilateral structure. Second, the regular hexagonal grid is clearly more advantageous in describing environmental scenes, which can ameliorate the "undercompleteness" phenomenon. Third, there were large differences in the planning paths based on two types of grids, as shown by the fact that the distance of the planning paths obtained by the regular hexagonal grid was reduced by at least 10.8% and at most 15.6% compared with the regular quadrilateral grid.
The vision-based robot pose estimation and mapping system has the disadvantage of low pose estimation accuracy and poor local detail mapping effects, while the modeling environment has poor features, high dynamics, weak light, and multiple shadows, among others. To address these issues, we propose an adaptive pose fusion (APF) method to fuse the robot’s pose and use the optimized pose to construct an indoor map. Firstly, the proposed method calculates the robot’s pose by the camera and inertial measurement unit (IMU), respectively. Then, the pose fusion method is adaptively selected according to the motion state of the robot. When the robot is in a static state, the proposed method directly uses the extended Kalman filter (EKF) method to fuse camera and IMU data. When the robot is in a motive state, the weighted coefficient is determined according to the matching success rate of the feature points, and the weighted pose fusion (WPF) method is used to fuse camera and IMU data. According to the different states, a series of new poses of the robot are obtained. Secondly, the fusion optimized pose is used to correct the distance and azimuth angle of the laser points obtained by LiDAR, and a Gauss–Newton iterative matching process is used to match the corresponding laser points to construct an indoor map. Finally, a pose fusion experiment is designed, and the EuRoc data and the measured data are used to verify the effectiveness of this method. The experimental results confirm that this method provides higher pose estimation accuracy compared with the robust visual inertial odometry (ROVIO) and visual-inertial ORB-SLAM (VI ORB-SLAM) algorithms. Compared with the Cartographer algorithm, this method provides higher two-dimensional map modeling accuracy and modeling performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.