We consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger (INLS) equation iu_t +\Delta u=\lvert x\rvert^{-b} f(u),\quad u(0)=u_0 \in H^s(\mathbb{R}^n), where 0<s<\min\{n,\frac{n}{2} +1\} , 0<b<\min\{2,n-s,1+\frac{n-2s}{2}\} and f(u) is a nonlinear function that behaves like \lambda \lvert u\rvert^{\sigma} u with \lambda \in \mathbb{C} and \sigma >0 . We prove that the Cauchy problem of the INLS equation is globally well-posed in H^s(\mathbb{R}^n) if the initial data is sufficiently small and \sigma_0 <\sigma <\sigma_s , where \sigma_0 =\frac{4-2b}{n} and \sigma_s =\frac{4-2b}{n-2s} if s<\frac{n}{2} , \sigma_s =\infty if s\ge \frac{n}{2} . Our global well-posedness result improves the one of Guzmán [Nonlinear Anal. Real World Appl. 37 (2017), 249–286] by extending the validity of s and b . In addition, we also have the small data scattering result.
<p style='text-indent:20px;'>We consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger (INLS) equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ iu_{t} +\Delta u = |x|^{-b} f(u), \;u(0)\in H^{s} (\mathbb R^{n} ), $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ n\in \mathbb N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ 0<s<\min \{ n, \; 1+n/2\} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ 0<b<\min \{ 2, \;n-s, \;1+\frac{n-2s}{2} \} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f(u) $\end{document}</tex-math></inline-formula> is a nonlinear function that behaves like <inline-formula><tex-math id="M5">\begin{document}$ \lambda |u|^{\sigma } u $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M6">\begin{document}$ \sigma>0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ \lambda \in \mathbb C $\end{document}</tex-math></inline-formula>. Recently, the authors in [<xref ref-type="bibr" rid="b1">1</xref>] proved the local existence of solutions in <inline-formula><tex-math id="M8">\begin{document}$ H^{s}(\mathbb R^{n} ) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M9">\begin{document}$ 0\le s<\min \{ n, \; 1+n/2\} $\end{document}</tex-math></inline-formula>. However even though the solution is constructed by a fixed point technique, continuous dependence in the standard sense in <inline-formula><tex-math id="M10">\begin{document}$ H^{s}(\mathbb R^{n} ) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M11">\begin{document}$ 0< s<\min \{ n, \; 1+n/2\} $\end{document}</tex-math></inline-formula> doesn't follow from the contraction mapping argument. In this paper, we show that the solution depends continuously on the initial data in the standard sense in <inline-formula><tex-math id="M12">\begin{document}$ H^{s}(\mathbb R^{n} ) $\end{document}</tex-math></inline-formula>, i.e. in the sense that the local solution flow is continuous <inline-formula><tex-math id="M13">\begin{document}$ H^{s}(\mathbb R^{n} )\to H^{s}(\mathbb R^{n} ) $\end{document}</tex-math></inline-formula>, if <inline-formula><tex-math id="M14">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula> satisfies certain assumptions.</p>
<p style='text-indent:20px;'>In this paper, we study the Cauchy problem for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ iu_{t} +\Delta u-c|x|^{-2}u+|x|^{-b} |u|^{\sigma } u=0,\; u(0)=u_{0} \in H_{c}^{1},\;(t, x)\in \mathbb R\times\mathbb R^{d}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ d\ge3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ 0<b<2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \frac{4-2b}{d}<\sigma<\frac{4-2b}{d-2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ c>-c(d):=-\left(\frac{d-2}{2}\right)^{2} $\end{document}</tex-math></inline-formula>. We first establish the criteria for global existence and blow-up of general (not necessarily radial or finite variance) solutions to the equation. Using these criteria, we study the global existence and blow-up of solutions to the equation with general data lying below, at, and above the ground state threshold. Our results extend the global existence and blow-up results of Campos-Guzmán (Z. Angew. Math. Phys., 2021) and Dinh-Keraani (SIAM J. Math. Anal., 2021).</p>
We consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger (INLS) equa-where n ∈ N, 0 < s < min{n, 1 + n/2}, 0 < b < min{2, n − s, 1 + n−2s 2 } and f (u) is a nonlinear function that behaves like λ |u| σ u with σ > 0 and λ ∈ C. Recently, An-Kim [1] proved the local existence of solutions in H s (R n ) with 0 ≤ s < min{n, 1+n/2}. However even though the solution is constructed by a fixed point technique, continuous dependence in the standard sense in H s (R n ) with 0 < s < min{n, 1 + n/2} doesn't follow from the contraction mapping argument. In this paper, we show that the solution depends continuously on the initial data in the standard sense in H s (R n ), i.e. in the sense that the local solution flow is continuous H s (R n ) → H s (R n ), if σ satisfies certain assumptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.