<p style='text-indent:20px;'>In this paper, we study the Cauchy problem for the inhomogeneous biharmonic nonlinear Schrödinger equation (IBNLS)</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ iu_{t} +\Delta^{2} u = \lambda |x|^{-b}|u|^{\sigma}u, u(0) = u_{0} \in H^{s} (\mathbb R^{d}), $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda \in \mathbb R $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ d\in \mathbb N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ 0<s<\min \{2+\frac{d}{2}, \frac{3}{2}d\} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ 0<b<\min\{4, d, \frac{3}{2}d-s, \frac{d}{2}+2-s\} $\end{document}</tex-math></inline-formula>. Under some regularity assumption for the nonlinear term, we prove that the IBNLS equation is globally well-posed in <inline-formula><tex-math id="M5">\begin{document}$ H^{s}(\mathbb R^{d}) $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M6">\begin{document}$ \frac{8-2b}{d}<\sigma< \sigma_{c}(s) $\end{document}</tex-math></inline-formula> and the initial data is sufficiently small, where <inline-formula><tex-math id="M7">\begin{document}$ \sigma_{c}(s) = \frac{8-2b}{d-2s} $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M8">\begin{document}$ s<\frac{d}{2} $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M9">\begin{document}$ \sigma_{c}(s) = \infty $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M10">\begin{document}$ s\ge \frac{d}{2} $\end{document}</tex-math></inline-formula>.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.