Interactions between rice and Magnaporthe oryzae involve the recognition of cellular components and the exchange of complex molecular signals from both partners. How these interactions occur in rice cells is still elusive. We employed robust-long serial analysis of gene expression, massively parallel signature sequencing, and sequencing by synthesis to examine transcriptome profiles of infected rice leaves. A total of 6,413 in planta-expressed fungal genes, including 851 genes encoding predicted effector proteins, were identified. We used a protoplast transient expression system to assess 42 of the predicted effector proteins for the ability to induce plant cell death. Ectopic expression assays identified five novel effectors that induced host cell death only when they contained the signal peptide for secretion to the extracellular space. Four of them induced cell death in Nicotiana benthamiana. Although the five effectors are highly diverse in their sequences, the physiological basis of cell death induced by each was similar. This study demonstrates that our integrative genomic approach is effective for the identification of in planta-expressed cell death-inducing effectors from M. oryzae that may play an important role facilitating colonization and fungal growth during infection.
BackgroundFungal plant pathogens cause serious agricultural losses worldwide. Alternaria arborescens is a major pathogen of tomato, with its virulence determined by the presence of a conditionally dispensable chromosome (CDC) carrying host-specific toxin genes. Genes encoding these toxins are well-studied, however the genomic content and organization of the CDC is not known.ResultsTo gain a richer understanding of the molecular determinants of virulence and the evolution of pathogenicity, we performed whole genome sequencing of A. arborescens. Here we present the de-novo assembly of the CDC and its predicted gene content. Also presented is hybridization data validating the CDC assembly. Predicted genes were functionally annotated through BLAST. Gene ontology terms were assigned, and conserved domains were identified. Differences in nucleotide usage were found between CDC genes and those on the essential chromosome (EC), including GC3-content, codon usage bias, and repeat region load. Genes carrying PKS and NRPS domains were identified in clusters on the CDC and evidence supporting the origin of the CDC through horizontal transfer from an unrelated fungus was found.ConclusionsWe provide evidence supporting the hypothesis that the CDC in A. arborescens was acquired through horizontal transfer, likely from an unrelated fungus. We also identified several predicted CDC genes under positive selection that may serve as candidate virulence factors.
Significant progress has been made in defining the central signaling networks in many organisms, but collectively we know little about the downstream targets of these networks and the genes they regulate. To reconstruct the regulatory circuit of calcineurin signal transduction via MoCRZ1, a Magnaporthe oryzae C2H2 transcription factor activated by calcineurin dephosphorylation, we used a combined approach of chromatin immunoprecipitation - chip (ChIP-chip), coupled with microarray expression studies. One hundred forty genes were identified as being both a direct target of MoCRZ1 and having expression concurrently differentially regulated in a calcium/calcineurin/MoCRZ1 dependent manner. Highly represented were genes involved in calcium signaling, small molecule transport, ion homeostasis, cell wall synthesis/maintenance, and fungal virulence. Of particular note, genes involved in vesicle mediated secretion necessary for establishing host associations, were also found. MoCRZ1 itself was a target, suggesting a previously unreported autoregulation control point. The data also implicated a previously unreported feedback regulation mechanism of calcineurin activity. We propose that calcium/calcineurin regulated signal transduction circuits controlling development and pathogenicity manifest through multiple layers of regulation. We present results from the ChIP-chip and expression analysis along with a refined model of calcium/calcineurin signaling in this important plant pathogen.
BackgroundThe dimorphic fungus Histoplasma capsulatum causes respiratory and systemic disease in mammalian hosts by expression of factors that enable survival within phagocytic cells of the immune system. Histoplasma’s dimorphism is distinguished by growth either as avirulent mycelia or as pathogenic yeast. Geographically distinct strains of Histoplasma differ in their relative virulence in mammalian hosts and in production of and requirement for specific virulence factors. The close similarity in the genome sequences of these diverse strains suggests that phenotypic variations result from differences in gene expression rather than gene content. To provide insight into how the transcriptional program translates into morphological variation and the pathogenic lifestyle, we compared the transcriptional profile of the pathogenic yeast phase and the non-pathogenic mycelial phase of two clinical isolates of Histoplasma.ResultsTo overcome inaccuracies in ab initio genome annotation of the Histoplasma genome, we used RNA-seq methodology to generate gene structure models based on experimental evidence. Quantitative analyses of the sequencing reads revealed 6% to 9% of genes are differentially regulated between the two phases. RNA-seq-based mRNA quantitation was strongly correlated with gene expression levels determined by quantitative RT-PCR. Comparison of the yeast-phase transcriptomes between strains showed 7.6% of all genes have lineage-specific expression differences including genes contributing, or potentially related, to pathogenesis. GFP-transcriptional fusions and their introduction into both strain backgrounds revealed that the difference in transcriptional activity of individual genes reflects both variations in the cis- and trans-acting factors between Histoplasma strains.ConclusionsComparison of the yeast and mycelial transcriptomes highlights genes encoding virulence factors as well as those involved in protein glycosylation, alternative metabolism, lipid remodeling, and cell wall glycanases that may contribute to Histoplasma pathogenesis. These studies lay an essential foundation for understanding how gene expression variations contribute to the strain- and phase-specific virulence differences of Histoplasma.
BackgroundRice blast caused by the fungus Magnaporthe oryzae is an important disease in virtually every rice growing region of the world, which leads to significant annual decreases of grain quality and yield. To prevent disease, resistance genes in rice have been cloned and introduced into susceptible cultivars. However, introduced resistance can often be broken within few years of release, often due to mutation of cognate avirulence genes in fungal field populations.ResultsTo better understand the pattern of mutation of M. oryzae field isolates under natural selection forces, we used a next generation sequencing approach to analyze the genomes of two field isolates FJ81278 and HN19311, as well as the transcriptome of FJ81278. By comparing the de novo genome assemblies of the two isolates against the finished reference strain 70–15, we identified extensive polymorphisms including unique genes, SNPs (single nucleotide polymorphism) and indels, structural variations, copy number variations, and loci under strong positive selection. The 1.75 MB of isolate-specific genome content carrying 118 novel genes from FJ81278, and 0.83 MB from HN19311 were also identified. By analyzing secreted proteins carrying polymorphisms, in total 256 candidate virulence effectors were found and 6 were chosen for functional characterization.ConclusionsWe provide results from genome comparison analysis showing extensive genome variation, and generated a list of M. oryzae candidate virulence effectors for functional characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.