Previous studies have demonstrated that aneuploidy in human embryos is surprisingly frequent with 50–80% of cleavage-stage human embryos carrying an abnormal chromosome number. Here we combine non-invasive time-lapse imaging with karyotypic reconstruction of all blastomeres in four-cell human embryos to address the hypothesis that blastomere behaviour may reflect ploidy during the first two cleavage divisions. We demonstrate that precise cell cycle parameter timing is observed in all euploid embryos to the four-cell stage, whereas only 30% of aneuploid embryos exhibit parameter values within normal timing windows. Further, we observe that the generation of human embryonic aneuploidy is complex with contribution from chromosome-containing fragments/micronuclei that frequently emerge and may persist or become reabsorbed during interphase. These findings suggest that cell cycle and fragmentation parameters of individual blastomeres are diagnostic of ploidy, amenable to automated tracking algorithms, and likely of clinical relevance in reducing transfer of embryos prone to miscarriage.
SummaryUnderstanding human pre-implantation development has important implications for assisted reproductive technology (ART) and for human embryonic stem cell (hESC)-based therapies. Owing to limited resources, the cellular and molecular mechanisms governing this early stage of human development are poorly understood. Nonetheless, recent advances in non-invasive imaging techniques and molecular and genomic technologies have helped to increase our understanding of this fascinating stage of human development. Here, we summarize what is currently known about human pre-implantation embryo development and highlight how further studies of human pre-implantation embryos can be used to improve ART and to fully harness the potential of hESCs for therapeutic goals. Key words: Human embryo, Oocyte to embryo transition, Zygote, Cleavage division, Blastocyst, Human embryonic stem cells, Aneuploidy IntroductionStudies of mammalian embryo development, especially in the mouse, have provided key insights into early mammalian developmental pathways. However, species-specific differences, for example in the timing of the major wave of genome activation, the patterns of gene expression, the frequency of chromosome missegregation and the patterns of epigenetic modifications, may limit the extrapolation of some findings to human embryo development. To date, studies of human pre-implantation development have utilized spare human pre-implantation embryos derived from in vitro fertilization (IVF; see Glossary, Box 1) to obtain insights into aspects of development specific to humans. Historically, these studies have focused on the morphological examination of embryos and the identification of factors that can improve in vitro culture, such as the conditions required to fertilize human oocytes in vitro, to cryopreserve and thaw human embryos and to promote human blastocyst formation. More recently, with the advent of advanced imaging techniques and sensitive gene expression profiling technologies, these studies are beginning to provide a clearer understanding of human pre-implantation development at cellular and molecular resolution. In addition, spare human pre-implantation embryos have enabled the derivation of human embryonic stem cells (hESCs), leading to the establishment of novel tools for human developmental biology and the emergence of a new field of research, namely hESC-based regenerative medicine. Thus, further investigations into the fundamental aspects of human pre-implantation development might provide not only insights into human developmental biology and common birth defects but also potential benefits for reproductive health and improvements in regenerative medicine.In this Primer, we delve further into the specifics of human preimplantation embryo development and discuss its relationship to that of other species. We also provide a summary of our current understanding of the molecular pathways of early human embryo development. Finally, we discuss how studies of hESCs can be used to further our understanding of early hum...
The causes of embryonic arrest during pre-implantation development are poorly understood. Attempts to correlate patterns of oocyte gene expression with successful embryo development have been hampered by the lack of reliable and nondestructive predictors of viability at such an early stage. Here we report that zygote viscoelastic properties can predict blastocyst formation in humans and mice within hours after fertilization, with >90% precision, 95% specificity and 75% sensitivity. We demonstrate that there are significant differences between the transcriptomes of viable and non-viable zygotes, especially in expression of genes important for oocyte maturation. In addition, we show that low-quality oocytes may undergo insufficient cortical granule release and zona-hardening, causing altered mechanics after fertilization. Our results suggest that embryo potential is largely determined by the quality and maturation of the oocyte before fertilization, and can be predicted through a minimally invasive mechanical measurement at the zygote stage.
Reprogramming of somatic cells to different extents has been reported using different methods. However, this is normally accompanied by the use of exogenous materials, and the overall reprogramming efficiency has been low. Chemicals and small molecules have been used to improve the reprogramming process during somatic cell nuclear transfer (SCNT) and induced pluripotent stem (iPS) cell generation. We report here the first application of a combined epigenetic and non-genetic approach for reprogramming somatic cells, i.e., DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and human embryonic stem cell (hESC) extracts. When somatic cells were pretreated with these inhibitors before exposure to hESC (MEL1) extracts, morphological analysis revealed a higher rate of hESC-like colony formation than without pretreatment. Quantitative PCR (qPCR) demonstrated that pluripotency genes were upregulated when compared to those of somatic cells or treated with hESC extracts alone. Overall changes in methylation and acetylation levels of pretreated somatic cells suggests that epigenetic states of the cells have an effect on reprogramming efficiency induced by hESC extracts. KnockOutserum replacement (KOSR™) medium (KO-SR) played a positive role in inducing expression of the pluripotency genes. hESC extracts could be an alternative approach to reprogram somatic cells without introducing exogenous materials. The epigenetic pre-treatment of somatic cells could be used to improve the efficiency of reprogramming process. Under differentiation conditions, the reprogrammed cells exhibited differentiation ability into neurons suggesting that, although fully reprogramming was not achieved, the cells could be transdifferentiated after reprogramming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.