High-convergence order iterative methods play a major role in scientific, computational and engineering mathematics, as they produce sequences that converge and thereby provide solutions to nonlinear equations. The convergence order is calculated using Taylor Series extensions, which require the existence and computation of high-order derivatives that do not occur in the methodology. These results cannot, therefore, ensure that the method converges in cases where there are no such high-order derivatives. However, the method could converge. In this paper, we are developing a process in which both the local and semi-local convergence analyses of two related methods of the sixth order are obtained exclusively from information provided by the operators in the method. Numeric applications supplement the theory.
The semi-local convergence is presented for a one parameter seventh order method to obtain solutions of Banach space valued nonlinear models. Existing works utilized hypotheses up to the eighth derivative to prove the local convergence. But these high order derivatives are not on the method and they may not exist. Hence, the earlier results can only apply to solve equations containing operators that are at least eight times differentiable although this method may converge. That is why, we only apply the first derivative in our convergence result. Therefore, the results on calculable error estimates, convergence radius and uniqueness region for the solution are derived in contrast to the earlier proposals dealing with the less challenging local convergence case. Hence, we enlarge the applicability of these methods. The methodology used does not depend on the method and it is very general. Therefore, it can be used to extend other methods in an analogous way. Finally, some numerical tests are performed at the end of the text, where the convergence conditions are fulfilled.
Iterative methods which have high convergence order are crucial in computational mathematics since the iterates produce sequences converging to the root of a non-linear equation. A plethora of applications in chemistry and physics require the solution of non-linear equations in abstract spaces iteratively. The derivation of the order of the iterative methods requires expansions using Taylor series formula and higher-order derivatives not present in the method. Thus, these results cannot prove the convergence of the iterative method in these cases when such higher-order derivatives are non-existent. However, these methods may still converge. Our motivation originates from the need to handle these problems. No error estimates are given that are controlled by constants. The process introduced in this paper discusses both the local and the semi-local convergence analysis of two step fifth and multi-step 5+3r order iterative methods obtained using only information from the operators on these methods. Finally, the novelty of our process relates to the fact that the convergence conditions depend only on the functions and operators which are present in the methods. Thus, the applicability is extended to these methods. Numerical applications complement the theory.
Many applications from a wide variety of disciplines in the natural sciences and also in engineering are reduced to solving of an equation or a system of equations in a correspondingly chosen abstract area. For most of these problems, the solutions are found iterative, because their analytic versions are difficult to find or impossible. This article encompasses efficient, derivatives-free, high-convergence iterative methods. Convergence of two types: Local and Semi-local areas will be investigated under the conditions of the ϕ, ψ-continuity utilizing operators on the method. The new method can also be applied to other methods, using inverses of the linear operator or the matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.