As the use of mobile devices increases, a location-based service (LBS) becomes increasingly popular because it provides more convenient context-aware services. However, LBS introduces problematic issues for location privacy due to the nature of the service. Location privacy protection methods based on k-anonymity and ℓ-diversity have been proposed to provide anonymized use of LBS. However, the k-anonymity and ℓ-diversity methods still can endanger the user's privacy because location semantic information could easily be breached while using LBS. This paper presents a novel location privacy protection technique, which protects the location semantics from an adversary. In our scheme, location semantics are first learned from location data. Then, the trustedanonymization server performs the anonymization using the location semantic information by cloaking with semantically heterogeneous locations. Thus, the location semantic information is kept secure as the cloaking is done with semantically heterogeneous locations and the true location information is not delivered to the LBS applications. This paper proposes algorithms for learning location semantics and achieving semantically secure cloaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.