Enterovirus 71 (EV71) infection is known to cause hand, foot, and mouth disease (HFMD), which is associated with neurological complications; however, there is currently no effective treatment for this infection. Flavonoids are a large group of naturally occurring compounds with multiple bioactivities, and the inhibitory effects of several flavonoids against EV71 have been studied in cell cultures; however, to date, there are no reported data on their effects in animal models. In this study, we confirmed the in vitro activities of eight flavonoids against EV71 infection, based on the inhibition of cytopathic effects. Moreover, these flavonoids were found to reduce viral genomic RNA replication and protein synthesis. We further demonstrated the protective efficacy of these flavonoids in newborn mice challenged with a lethal dose of EV71. Apigenin, luteolin, kaempferol, formononetin, and penduletin conferred survival protection of 88.89%, 91.67%, 88.89%, 75%, and 66.67%, respectively, from the lethal EV71 challenge. In addition, isorhamnetin provided the highest mice survival protection of 100% at a dose of 10 mg/kg. This study, to the best of our knowledge, is the first to evaluate the in vivo anti-EV7l activities of multiple flavonoids, and we accordingly identified flavonoids as potential leading compounds for anti-EV71 drug development.
Herpes simplex virus type 2 (HSV-2) is the causative pathogen of genital herpes and is closely associated with the occurrence of cervical cancer and human immunodeficiency virus (HIV) infection. The absence of an effective vaccine and the emergence of drug resistance to commonly used nucleoside analogs emphasize the urgent need for alternative antivirals against HSV-2. Recently, ABMA [1-adamantyl (5-bromo-2-methoxybenzyl) amine] has been demonstrated to be an inhibitor of several pathogens exploiting host-vesicle transport, which also participates in the HSV-2 lifecycle. Here, we showed that ABMA inhibited HSV-2-induced cytopathic effects and plaque formation with 50% effective concentrations of 1.66 and 1.08 μM, respectively. We also preliminarily demonstrated in a time of compound addition assay that ABMA exerted a dual antiviral mechanism by impairing virus entry, as well as the late stages of the HSV-2 lifecycle. Furthermore, in vivo studies showed that ABMA protected BALB/c mice from intravaginal HSV-2 challenge with an improved survival rate of 50% at 5 mg/kg (8.33% for the untreated virus infected control). Consequently, our study has identified ABMA as an effective inhibitor of HSV-2, both in vitro and in vivo, for the first time and presents an alternative to nucleoside analogs for HSV-2 infection treatment.
Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.