Previous studies suggest that abscisic acid (ABA) stimulates the activities of antioxidant enzymes under normal and chilling temperature and enhanced chilling resistance in Stylosanthes guianensis. The objective of this study was to test whether nitric oxide (NO) is involved in the ABA-induced activities of the antioxidant enzymes in Stylosanthes guianensis due to its nature as a second messenger in stress responses. Plants were treated with NO donors, ABA, ABA in combination with NO scavengers or the nitric oxide synthase (NOS) inhibitor and their effects on the activity of antioxidant enzymes and NO production were compared. The results showed that ABA increased the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The effect of ABA on antioxidant enzyme activities was suppressed by the NOS inhibitor, N(omega)-nitro-L-arginine (L-NNA), and the NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide (PTIO). NO content increased after 5 h of ABA treatment. The NO-scavenger, PTIO, and the NOS-inhibitor, L-NNA, inhibited the accumulation of NO in ABA-treated Stylosanthes guianensis. NO donor treatment enhanced the activities of SOD, CAT, and APX. The results suggested that NO was involved in the ABA-induced activities of SOD, CAT, and APX in Stylosanthes guianensis. ABA triggered NO production that may lead to the stimulation of antioxidant enzyme activities.
Cytokinins have been associated with delaying or suppressing leaf senescence in plants. The objectives of this study were to determine whether the expression of the ipt gene that encodes adenine isopentenyltransferase would delay leaf senescence induced by shade or heat stress in a perennial grass species. Creeping bentgrass (Agrostis stolonifera cv. Penncross) was transformed with ipt isolated from agrobacterium (Agrobacterium tumefaciens) using two gene constructs (SAG12-ipt and HSP18-ipt) designed to activate cytokinin synthesis during shade or heat stress. Whole plants of nine SAG12-ipt transgenic lines and the nontransgenic control plants were incubated in darkness at 20 °C for 20 days. Chlorophyll content of all transgenic lines and the control line decreased after dark treatment, but the decline was less pronounced in transgenic lines. All transgenic lines had higher isopentenyladenine (iP/iPA) content than the control line after 20 days of treatment. In six of the transgenic lines, iP/iPA content remained the same or higher after dark treatment. Whole plants of nine HSP18-ipt transgenic lines and the control plants were incubated at 35 °C for 7 days. Chlorophyll and iP/iPA content declined in the control plants, but the nine transgenic lines had a significantly higher concentration of iP/iPA and were able to maintain chlorophyll content at the prestress level. Our results suggest that expression of SAG12-ipt or HSP18-ipt in creeping bentgrass resulted in increases in cytokinin production, which may have led to the delay and suppression of leaf senescence induced by shade or heat stress.
Transgenic tomato plants were produced with the isopentenyl transferase gene (ipt) ligated to a promoter that is active exclusively in sink tissue. Initially, transgenic plants had smaller, round-scale leaves, swollen stems, and exhibited early development of lateral shoots compared to wild type. Expression of the ipt gene resulted in the formation of unbranched roots on cuttings and delayed senescence in excised leaves. Callus and root formation occurred on excised leaves and leaf discs during dark incubation. The retention percentage of chlorophyll, as well as cytokinin in excised leaves or discs was significantly greater than wild type. Transgenic tomato fruit had elevated levels of cytokinins in the first days after fruit set and these levels were maintained longer during fruit development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.