Protein-protein interactions are the foundations of cellular life activities. At present, the already known protein-protein interactions only account for a small part of the total. With the development of experimental and computing technology, more and more PPI data are mined, PPI networks are more and more dense. It is possible to predict protein-protein interaction from the perspective of network structure. Although there are many high-throughput experimental methods to detect protein-protein interactions, the cost of experiments is high, time-consuming, and there is a certain error rate meanwhile. Network-based approaches can provide candidates of protein pairs for high-throughput experiments and improve the accuracy rate. This paper presents a new link prediction approach "Sim" for PPI networks from the perspectives of proteins' complementary interfaces and gene duplication. By integrating our approach "Sim" with the state-of-art network-based approach "L3," the prediction accuracy and robustness are improved.
The dissemination of information on networks involves many important practical issues, such as the spread and containment of rumors in social networks, the spread of infectious diseases among the population, commercial propaganda and promotion, the expansion of political influence and so on. One of the most important problems is the influence-maximization problem which is to find out k most influential nodes under a certain propagate mechanism. Since the problem was proposed in 2001, many works have focused on maximizing the influence in a single network. It is a NP-hard problem and the state-of-art algorithm IMM proposed by Youze Tang et al. achieves a ratio of 63.2% of the optimum with nearly linear time complexity. In recent years, there have been some works of maximizing influence on multilayer networks, either in the situation of single or multiple influences. But most of them study seed selection strategies to maximize their own influence from the perspective of participants. In fact, the problem from the perspective of network owners is also worthy of attention. Since network participants have not had access to all information of the network for reasons such as privacy protection and corporate interests, they may have access to only part of the social network. The owners of networks can get the whole picture of the networks, and they need not only to maximize the overall influence, but also to consider allocating seeds to their customers fairly, i.e., the Fair Seed Allocation (FSA) problem. As far as we know, FSA problem has been studied on a single network, but not on multilayer networks yet. From the perspective of network owners, we propose a multiple-influence diffusion model MMIC on multilayer networks and its FSA problem. Two solutions of FSA problem are given in this paper, and we prove theoretically that our seed allocation schemes are greedy. Subsequent experiments also validate the effectiveness of our approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.