[1] We present evidence showing that the nonlinear dynamic heating (NDH) in the tropical Pacific ocean heat budget is essential in the generation of intense El Niño events as well as the observed asymmetry between El Niño (warm) and La Niña (cold) events. The increase in NDH associated with the enhanced El Niño activity had an influence on the recent tropical Pacific warming trend and it might provide a positive feedback mechanism for climate change in the tropical Pacific. INDEX TERMS: 4522
[1] In this paper, the conceptual recharge oscillator model for the El Niño-Southern Oscillation phenomenon (ENSO) is utilized to study the influence of fast variability such as that associated with westerly wind bursts (WWB) on dynamics of ENSO and predictability. The ENSO-WWB interaction is simply represented by stochastic forcing modulated by ENSO-related sea surface temperature (SST) anomalies. An analytical framework is developed to describe the ensemble-mean dynamics of ENSO under the stochastic forcing. Numerical ensemble simulations verify the main results derived from the analytical ensemble-mean theory: the state-dependent stochastic forcing enhances the instability of ENSO and its ensemble spread, generates asymmetry in the predictability of the onsets of cold and warm phases of ENSO, and leads to an ensemble-mean bias that may eventually contribute to a climate mean state bias.
A severe drought struck southwest China during autumn 2009, which had a huge impact on productivity and the lives of the affected population. A nonconventional El Niño, the so-called warm pool (WP) El Niño, was supposed to be a principal factor of this strong autumn drought. In sharp contrast to a conventional El Niño, in the 2009 WP El Niño year the maximum sea surface temperature (SST) anomalies are confined to the central equatorial Pacific Ocean. Moreover, this WP El Niño was characterized by the relatively farther westward location and the strongest intensity among the WP El Niño events in the past 60 years. Observations and modeling studies both indicate that the rainfall deficits over southwest China are significantly influenced by the combined effects of the location and intensity of the WP El Niño. That is, the drought over southwest China tends to be more severe when the warming SST anomalies associated with the WP El Niño are located farther westward and are stronger. Therefore, the strong autumn drought over southwest China in 2009 can be largely attributed to the concurrent distinctive WP El Niño, which generates a strongly anomalous cyclone over the west North Pacific and leads to a serious reduction in rainfall over southwest China. The influence of the Indian Ocean warming on autumn rainfall over southwest China was also examined but seems to have little contribution to this drought.
Seven different methods, with and without including geostrophic currents, were used to explore Ekman dynamics in the western Arctic Ocean for the period 1992–2014. Results show that surface geostrophic currents have been increasing and are much stronger than Ekman layer velocities in recent years (2003–2014) when the oceanic Beaufort Gyre (BG) is spinning up in the region. The new methods that include geostrophic currents result in more realistic Ekman pumping velocities than a previous iterative method that does not consider geostrophic currents and therefore overestimates Ekman pumping velocities by up to 52% in the central area of the BG over the period 2003–2014. When the BG is spinning up as seen in recent years, geostrophic currents become stronger, which tend to modify the ice‐ocean stress and moderate the wind‐driven Ekman convergence in the Canada Basin. This is a mechanism we have identified to play an important and growing role in stabilizing the Ekman convergence and therefore the BG in recent years. This mechanism may be used to explain three scenarios that describe the interplay of changes in wind forcing, sea ice motion, and geostrophic currents that control the variability of the Ekman dynamics in the central BG during 1992–2014. Results also reveal several upwelling regions in the southern and northern Canada Basin and the Chukchi Abyssal Plain which may play a significant role in physical and biological processes in these regions.
We propose a new source of aerosol particles in the lower atmosphere that is based on the formation, growth, and recombination of ubiquitous cosmogenically-generated ions. This mechanism provides a uniform, continuous fine-particle generator in the presence of precursor vapors, such as sulfuric acid, or certain organic compounds. Thus, for example, aqueous sulfate aerosols can form at sulfuric acid vapor partial pressures well below the supersaturations required for homogeneous nucleation. Detailed microphysical modeling shows that the highly nonlinear chemical/physical system comprising ions, vapors, and aerosols produces ultrafine and accumulation mode particles having characteristics similar to those detected in the lower troposphere. Accordingly, this mechanism may explain the presence of a stable boundary layer aerosol population of several hundred particles/cm3. The theory of nucleation by ion-ion recombination (NIIR)is roughly calibrated here using observed ultrafine particle measurements, and is applied to interpret tropospheric aerosol observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.