Emerging two-terminal nanoscale memory devices, known as memristors, have demonstrated great potential for implementing energy-efficient neuro-inspired computing architectures over the past decade. As a result, a wide range of technologies have been developed that, in turn, are described via distinct empirical models. This diversity of technologies requires the establishment of versatile tools that can enable designers to translate memristors’ attributes in novel neuro-inspired topologies. In this study, we present NeuroPack, a modular, algorithm-level Python-based simulation platform that can support studies of memristor neuro-inspired architectures for performing online learning or offline classification. The NeuroPack environment is designed with versatility being central, allowing the user to choose from a variety of neuron models, learning rules, and memristor models. Its hierarchical structure empowers NeuroPack to predict any memristor state changes and the corresponding neural network behavior across a variety of design decisions and user parameter options. The use of NeuroPack is demonstrated herein via an application example of performing handwritten digit classification with the MNIST dataset and an existing empirical model for metal-oxide memristors.
Memristors, emerging non-volatile memory devices, have shown promising potential in neuromorphic hardware designs, especially in spiking neural network (SNN) hardware implementation. Memristor-based SNNs have been successfully applied in a wide range of applications, including image classification and pattern recognition. However, implementing memristor-based SNNs in text classification is still under exploration. One of the main reasons is that training memristor-based SNNs for text classification is costly due to the lack of efficient learning rules and memristor non-idealities. To address these issues and accelerate the research of exploring memristor-based spiking neural networks in text classification applications, we develop a simulation framework with a virtual memristor array using an empirical memristor model. We use this framework to demonstrate a sentiment analysis task in the IMDB movie reviews dataset. We take two approaches to obtain trained spiking neural networks with memristor models: 1) by converting a pre-trained artificial neural network (ANN) to a memristor-based SNN, or 2) by training a memristor-based SNN directly. These two approaches can be applied in two scenarios: offline classification and online training. We achieve the classification accuracy of 85.88\% by converting a pre-trained ANN to a memristor-based SNN and 84.86\% by training the memristor-based SNN directly, given that the baseline training accuracy of the equivalent ANN is 86.02\%. We conclude that it is possible to achieve similar classification accuracy in simulation from ANNs to SNNs and from non-memristive synapses to data-driven memristive synapses. We also investigate how global parameters such as spike train length, the read noise, and the weight updating stop conditions affect the neural networks in both approaches. This investigation further indicates that the simulation using statistic memristor models in the two approaches presented by this paper can assist the exploration of memristor-based SNNs in natural language processing tasks.
Electronic systems are becoming more and more ubiquitous as our world digitises. Simultaneously, even basic components are experiencing a wave of improvements with new transistors, memristors, voltage/current references, data converters, etc, being designed every year by hundreds of R &D groups world-wide. To date, the workhorse for testing all these designs has been a suite of lab instruments including oscilloscopes and signal generators, to mention the most popular. However, as components become more complex and pin numbers soar, the need for more parallel and versatile testing tools also becomes more pressing. In this work, we describe and benchmark an FPGA system developed that addresses this need. This general purpose testing system features a 64-channel source-meter unit, and $$2\times $$ 2 × banks of 32 digital pins for digital I/O. We demonstrate that this bench-top system can obtain $${170}\,\hbox {pA}$$ 170 pA current noise floor, $${40}\,\hbox {ns}$$ 40 ns pulse delivery at $$\pm {13.5}\,\hbox {V}$$ ± 13.5 V and $${12}\,\hbox {mA}$$ 12 mA maximum current drive/channel. We then showcase the instrument’s use in performing a selection of three characteristic measurement tasks: (a) current–voltage characterisation of a diode and a transistor, (b) fully parallel read-out of a memristor crossbar array and (c) an integral non-linearity test on a DAC. This work introduces a down-scaled electronics laboratory packaged in a single instrument which provides a shift towards more affordable, reliable, compact and multi-functional instrumentation for emerging electronic technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.