The development of acute lung injury (ALI) during sepsis almost doubles the mortality rate of patients. The efficacy of current treatment strategies is low as treatment is usually initiated following the onset of symptoms. Inflammation is one of the main mechanisms of autoimmune disorders and is a common feature of sepsis. The suppression of inflammation is therefore an important mechanism for the treatment of sepsis. Sirtuin 1 (Sirt1) has been demonstrated to play a role in the regulation of inflammation. Resveratrol, a potent Sirt1 activator, exhibits anti‑inflammatory properties. However, the role of resveratrol for the treatment of ALI during sepsis is not fully understood. In the present study, the anti‑inflammatory role of Sirt1 in the lipopolysaccharide (LPS)‑induced TC‑1 cell line and its therapeutic role in ALI was investigated in a mouse model of sepsis. The upregulation of matrix metalloproteinase-9, interleukin (IL)‑1β, IL‑6 and inducible nitric oxide synthase was induced by LPS in the mouse model of sepsis and the TC‑1 cell line, and resveratrol suppressed the overexpression of these proinflammatory molecules in a dose‑dependent manner. Resveratrol decreased pulmonary edema in the mouse model of sepsis induced by LPS. In addition, resveratrol improved lung function and reduced pathological alterations in the mouse model of sepsis. Knockdown of Sirt1 by RNA interference resulted in an increased susceptibility of TC‑1 cells to LPS stimulation and diminished the anti‑inflammatory effect of resveratrol. These results demonstrated that resveratrol inhibits LPS‑induced ALI and inflammation via Sirt1, and indicated that Sirt1 is an efficient target for the regulation of LPS‑induced ALI and inflammation. The present study provides insights into the treatment of ALI during sepsis.
The aim of this study is to clarify the clinical implication and functional role of structure specific recognition protein 1 (SSRP1) in hepatocellular carcinoma (HCC) and explore the underlying mechanism of aberrant high expression of SSRP1 in cancers. In the present investigation, we validated that SSRP1 was upregulated in HCC samples. We also demonstrated that its upregulation was associated with several clinicopathologic features such as higher serum AFP level, larger tumor size, and higher T stage of HCC patients; and its high expression indicated shorter overall survival and faster recurrence. To investigate the role of SSRP1 in HCC progression, both loss- and gain-function models were established. We demonstrated that SSPR1 modulated both proliferation and metastasis of HCC cells in vitro and vivo. Furthermore, we demonstrated that SSRP1-modulated apoptosis process and its knockdown increased the sensitivity of HCC cells to doxorubicin, 5-Fluorouracil, and cisplatin. We also identified microRNA-497 (miR-497) as a posttranscriptional regulator of SSRP1. Ectopic expression of miR-497 inhibited 3'-untranslated-region–coupled luciferase activity and suppressed endogenous SSRP1 expression at both messenger RNA and protein levels. For the first time, we proved that SSRP1 upregulation contributed to HCC development and the tumor-suppressive miR-497 served as its negative regulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.