Remote sensing tools are increasingly being used to survey forest structure. Most current methods rely on GPS signals, which are available in above-canopy surveys or in below-canopy surveys of open forests, but may be absent in below-canopy environments of dense forests. We trialled a technology that facilitates mobile surveys in GPS-denied below-canopy forest environments. The platform consists of a battery-powered UAV mounted with a LiDAR. It lacks a GPS or any other localisation device. The vehicle is capable of an 8 min flight duration and autonomous operation but was remotely piloted in the present study. We flew the UAV around a 20 m × 20 m patch of roadside trees and developed postprocessing software to estimate the diameter-at-breast-height (DBH) of 12 trees that were detected by the LiDAR. The method detected 73% of trees greater than 200 mm DBH within 3 m of the flight path. Smaller and more distant trees could not be detected reliably. The UAV-based DBH estimates of detected trees were positively correlated with the human-based estimates (R2 = 0.45, p = 0.017) with a median absolute error of 18.1%, a root-mean-square error of 25.1% and a bias of −1.2%. We summarise the main current limitations of this technology and outline potential solutions. The greatest gains in precision could be achieved through use of a localisation device. The long-term factor limiting the deployment of below-canopy UAV surveys is likely to be battery technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.