Nowadays, fossil energy continues to dominate China’s energy usage; its inefficient use and large crude emissions of coal and fuel oil in its end-consumption have brought about great pressure to reduce emissions. Electrical power substitution as a development strategy is an important step toward achieving sustainable development, the transformation of the end-use energy consumption structure, and double carbon goals. To better guide the broad promotion of electrical power substitution, and to offer theoretical support for its development, this paper quantifies the amount of electrical power substitution and the influencing factors that affect the potential of electrical energy substitution. This paper proposes a hybrid model, combining Tent chaos mapping (Tent), chicken swarm optimization (CSO), Cauchy–Gaussian mutation (CG), the sparrow search algorithm (SSA), and a support vector machine (SVM), as a Tent-CSO-CG-SSA-SVM model, which first uses the method of Tent chaos mapping to initialize the sparrow population in order to increase population diversity and improve the search ability of the algorithm. Then, the CSO is introduced to update the positions of sparrows, and the CG method is introduced to make the algorithm jump out of the local optimum, in order to improve the global search ability of the SSA. Finally, the final electrical power substitution potential prediction model is obtained by optimizing the SVM through a multi-algorithm combination approach. To verify the validity of the model, two regions in China were used as case studies for the prediction analysis of electrical energy substitution potential, and the prediction results were compared with multiple models. The results of the study show that Tent-CSO-CG-SSA-SVM offers a good improvement in prediction accuracy, and that Tent-CSO-CG-SSA-SVM is a promising method for the prediction of electrical power substitution potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.