The hydrotalcite (HT) film is a promising bioactive coating for magnesium alloys. In the present study, we investigate the corrosion behavior of HT film in the simulated body fluid (SBF), and compare with which in NaCl solution. The HT film can provide a very plummy initial protection to the AZ31 alloy in SBF. The corrosion behavior of the HT film in the two solutions is quite different. When in 0.1 mol·L−1 NaCl solution, the film is dissolved gradually, and filiform corrosion is predominant after 3 days immersion. While in Hank’s solution, the thickness and composition of the film are changed. A corrosion products layer mainly consisted of Mg/Ca–PO43−/HPO42−, and minor of CaCO3 is deposited on the top of HT film, which enhances the barrier effect of the HT film. As a result, except for local pit corrosion at several active places, most of the area of the coated sample still remains integral even after immersion for 15 days. It is demonstrated that the HT film has better corrosion protection effect in SBF than in NaCl solution.
Figure 11. Accumulated damage of the tensile specimens with critical necking at different temperatures of a) 1050 C, b) 1100 C, c) 1150 C, and d) dependency of the critical damage values on deformation temperature and average strain rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.