BACKGROUND: Insect chitinases play a vital part in chitin degradation in exoskeletons and gut linings during the molting process, and therefore are considered potential targets for new insecticide designs or RNA interference (RNAi)-based pest management. Systematic functional analysis of chitinase genes has already been conducted in several insect pests, but not Plutella xylostella.
RESULTS:In this study, 13 full-length chitinase transcripts were obtained in P. xylostella. Developmental and tissue-specific expression pattern analysis revealed that seven chitinase transcripts were periodically expressed during molting stage and mainly expressed in the integument or midgut, including PxCht3, PxCht5, PxCht6-2, PxCht7, PxCht8, PxCht10 and PxCht-h. RNAi-mediated knockdown of these specific expressed genes revealed that PxCht5 and PxCht10 were essential in larval molting, pupation and eclosion, and PxCht7 was indispensable only in eclosion. No significant effects were observed on insect survival or normal development when the rest chitinase transcripts were suppressed by RNAi. CONCLUSION: Our results indicated the function of P. xylostella chitinase family genes during the molting process, and may provide potential targets for RNAi-based management of P. xylostella.
BACKGROUND: Plutella xylostella (L.) is a serious worldwide pest that feeds on cruciferous plants and has evolved resistance to different classes of insecticides used for its control, including chlorantraniliprole. ATP-binding cassette (ABC) transporters, constituting the largest transport family in organisms, are involved in phase III of the detoxification process and may play important roles in insecticide resistance. RESULTS: A total of 15 ABC transporter transcripts from subfamily G were identified in P. xylostella based on the latest DBM genome. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, significantly increased the toxicity of chlorantraniliprole against larvae of two chlorantraniliprole-resistant P. xylostella populations (NIL and BL). ABCG2, ABCG5, ABCG6, ABCG9, ABCG11, ABCG14 and ABCG15 were significantly overexpressed in NIL and BL compared with the susceptible population (SS), and ABCG1, ABCG6, ABCG8, ABCG9, ABCG14 and ABCG15 were significantly upregulated after treatment with the LC 50 of chlorantraniliprole in SS. Subsequently, ABCG6, ABCG9 and ABCG14, which were overexpressed in both NIL and BL and could be induced in SS, were chosen for functional study. RNAi-mediated knockdown of each of the three ABCGs significantly increased the sensitivity of larvae to chlorantraniliprole. These results confirmed that overexpression of ABCG6, ABCG9 and ABCG14 may contribute to chlorantraniliprole resistance in P. xylostella. CONCLUSION: Overexpression of some genes in the ABCG subfamily is involved in P. xylostella resistance to chlorantraniliprole. These results may help to establish a foundation for further studies investigating the role played by ABC transporters in chlorantraniliprole resistance in P. xylostella or other insect pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.